Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste
Abstract
:1. Introduction
2. Results
2.1. Isolation and Preliminary Identification of Microorganisms
2.2. Evaluation of Proteolytic Activity of Isolated Strains
2.3. Evaluation of Keratinolytic Aptitude in the Degradation of Waste Substrates
2.4. Molecular Identification and Phylogenetic Analysis of Selected Strains
3. Materials and Methods
3.1. Sample Collection
3.2. Isolation of Microorganisms
3.3. MALDI-TOF MS—Preliminary Identification of Microorganisms
3.4. Screening for Proteolytic and Keratinolytic Enzymatic Activities
3.4.1. Activation of Isolates and Inoculum Preparation
3.4.2. Proteolytic Activity Assay
- —the average diameter of clear zones around colonies;
- —the average diameter of colonies.
3.4.3. Screening for Keratinolytic Activity
3.5. Molecular Identification
3.6. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajabi, M.; Ali, A.; McConnell, M.; Cabral, J. Keratinous Materials: Structures and Functions in Biomedical Applications. Mater. Sci. Eng. C 2020, 110, 110612. [Google Scholar] [CrossRef]
- Kumar Kumawat, T.; Sharma, A.; Sharma, V.; Chandra, S. Keratin Waste: The Biodegradable Polymers. In Keratin; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Sypka, M.; Jodłowska, I.; Białkowska, A.M. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, Mechanical Properties, Occurrence in Biological Organisms, and Efforts at Bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef]
- Perța-Crișan, S.; Ursachi, C.; Ștefan; Gavrilaș, S.; Oancea, F.; Munteanu, F.D. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers 2021, 13, 1896. [Google Scholar] [CrossRef] [PubMed]
- Sinkiewicz, I.; Staroszczyk, H.; Śliwińska, A. Solubilization of Keratins and Functional Properties of Their Isolates and Hydrolysates. J. Food Biochem. 2018, 42, e12494. [Google Scholar] [CrossRef]
- Bach, E.; Lopes, F.C.; Brandelli, A. Biodegradation of α and β-Keratins by Gram-Negative Bacteria. Int. Biodeterior. Biodegrad. 2015, 104, 136–141. [Google Scholar] [CrossRef]
- Łaba, W.; Żarowska, B.; Chorążyk, D.; Pudło, A.; Piegza, M.; Kancelista, A.; Kopeć, W. New Keratinolytic Bacteria in Valorization of Chicken Feather Waste. AMB Express 2018, 8, 9. [Google Scholar] [CrossRef]
- Vidmar, B.; Vodovnik, M. Microbial Keratinases: Enzymes with Promising Biotechnological Applications. Food Technol. Biotechnol. 2018, 56, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Bach, E.; Cannavan, F.S.; Duarte, F.R.S.; Taffarel, J.A.S.; Tsai, S.M.; Brandelli, A. Characterization of Feather-Degrading Bacteria from Brazilian Soils. Int. Biodeterior. Biodegrad. 2011, 65, 102–107. [Google Scholar] [CrossRef]
- Brandelli, A.; Sala, L.; Kalil, S.J. Microbial Enzymes for Bioconversion of Poultry Waste into Added-Value Products. Food Res. Int. 2015, 73, 3–12. [Google Scholar] [CrossRef]
- Martín-González, D.; Bordel, S.; Santos-Beneit, F. Characterization of the Keratinolytic Activity of Three Streptomyces Strains and Impact of Their Co-Cultivation on This Activity. Microorganisms 2023, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, A.C.; Pintado, M.E.; Malcata, F.X. Search for Novel Proteolytic Enzymes Aimed at Textile and Agro-Industrial Applications: An Overview of Current and Novel Approaches. Biocatal. Biotransform. 2012, 30, 154–169. [Google Scholar] [CrossRef]
- Pelletier, M.; Draper, J. Characterization and Identification of Bacterial Flora from Infected Equine Hooves. Int. J. Vet. Sci. Res. 2022, 8, 050–056. [Google Scholar] [CrossRef]
- Tuohy, J.M.; Mueller-Spitz, S.R.; Albert, C.M.; Scholz-Ng, S.E.; Wall, M.E.; Noutsios, G.T.; Gutierrez, A.J.; Sandrin, T.R. MALDI-TOF MS Affords Discrimination of Deinococcus Aquaticus Isolates Obtained From Diverse Biofilm Habitats. Front. Microbiol. 2018, 9, 2442. [Google Scholar] [CrossRef] [PubMed]
- Jia Khor, M.; Broda, A.; Kostrzewa, M.; Drobniewski, F.; Larrouy-Maumus, G. An Improved Method for Rapid Detection of Mycobacterium Abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front. Chem. 2021, 9, 715890. [Google Scholar] [CrossRef] [PubMed]
- Vidal, L.M.R.; Venas, T.M.; Gonçalves, A.R.P.; Mattsson, H.K.; Silva, R.V.P.; Nóbrega, M.S.; Azevedo, G.P.R.; Garcia, G.D.; Tschoeke, D.A.; Vieira, V.V.; et al. Rapid Screening of Marine Bacterial Symbionts Using MALDI-TOF MS. Arch. Microbiol. 2020, 202, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, A.; Figueras, M.J. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef]
- Afridi, M.S.; Van Hamme, J.d.; Bundschuh, J.; Sumaira; Khan, M.N.; Salam, A.; Waqar, M.; Munis, M.F.H.; Chaudhary, H.J. Biotechnological Approaches in Agriculture and Environmental Management—Bacterium Kocuria Rhizophila 14ASP as Heavy Metal and Salt- Tolerant Plant Growth- Promoting Strain. Biologia 2021, 76, 3091–3105. [Google Scholar] [CrossRef]
- Pons, I.; Scieur, N.; Dhondt, L.; Renard, M.-E.; Renoz, F.; Hance, T. Pervasiveness of the Symbiont Serratia Symbiotica in the Aphid Natural Environment: Distribution, Diversity and Evolution at a Multitrophic Level. FEMS Microbiol. Ecol. 2022, 98, fiac012. [Google Scholar] [CrossRef]
- Chiellini, C.; Lombardo, K.; Mocali, S.; Miceli, E.; Fani, R. Pseudomonas Strains Isolated from Different Environmental Niches Exhibit Different Antagonistic Ability. Ethol. Ecol. Evol. 2019, 31, 399–420. [Google Scholar] [CrossRef]
- Alyousif, N.A. Distribution, Occurrence and Molecular Characterization of Bacillus Related Species Isolated from Different Soil in Basrah Province, Iraq. Biodiversitas 2022, 23, 679–686. [Google Scholar] [CrossRef]
- Strompfová, V.; Štempelová, L. Composition and Diversity of 16S RRNA Based Skin Bacterial Microbiome in Healthy Horses. Vet. Res. Commun. 2024. [Google Scholar] [CrossRef]
- Kamus, L.J.; Theoret, C.; Costa, M.C. Use of next Generation Sequencing to Investigate the Microbiota of Experimentally Induced Wounds and the Effect of Bandaging in Horses. PLoS ONE 2018, 13, e0206989. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy-Hunter, L.C.; Yu, A.; Rousseau, J.D.; Foster, R.A.; Weese, J.S. Longitudinal Study of the Cutaneous Microbiota of Healthy Horses. Vet. Dermatol. 2021, 32, 467. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Meena, S.K.; Meena, R.K.; Kumar, A.; Verma, J.P.; Singh, N.P. Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils? In Bacilli and Agrobiotechnology; Springer International Publishing: Cham, Switzerland, 2016; pp. 367–395. [Google Scholar]
- Chaudhary, P.; Xu, M.; Ahamad, L.; Chaudhary, A.; Kumar, G.; Adeleke, B.S.; Verma, K.K.; Hu, D.-M.; Širić, I.; Kumar, P.; et al. Application of Synthetic Consortia for Improvement of Soil Fertility, Pollution Remediation, and Agricultural Productivity: A Review. Agronomy 2023, 13, 643. [Google Scholar] [CrossRef]
- Paśmionka, I.B.; Bulski, K.; Boligłowa, E. The Participation of Microbiota in the Transformation of Nitrogen Compounds in the Soil—A Review. Agronomy 2021, 11, 977. [Google Scholar] [CrossRef]
- Karmakar, D.; Magotra, S.; Negi, R.; Kumar, S.; Rustagi, S.; Singh, S.; Rai, A.K.; Kour, D.; Yadav, A.N. Bacillus Species for Sustainable Management of Heavy Metals in Soil: Current Research and Future Challenges. J. Appl. Biol. Biotechnol. 2024, 12, 22–35. [Google Scholar] [CrossRef]
- Baranova, M.N.; Kudzhaev, A.M.; Mokrushina, Y.A.; Babenko, V.V.; Kornienko, M.A.; Malakhova, M.V.; Yudin, V.G.; Rubtsova, M.P.; Zalevsky, A.; Belozerova, O.A.; et al. Deep Functional Profiling of Wild Animal Microbiomes Reveals Probiotic Bacillus Pumilus Strains with a Common Biosynthetic Fingerprint. Int. J. Mol. Sci. 2022, 23, 1168. [Google Scholar] [CrossRef]
- Tiwari, S.; Prasad, V.; Lata, C. Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–55. [Google Scholar]
- Schwabe, R.; Dittrich, C.; Kadner, J.; Rudi Senges, C.H.; Bandow, J.E.; Tischler, D.; Schlömann, M.; Levicán, G.; Wiche, O. Secondary Metabolites Released by the Rhizosphere Bacteria Arthrobacter Oxydans and Kocuria Rosea Enhance Plant Availability and Soil–Plant Transfer of Germanium (Ge) and Rare Earth Elements (REEs). Chemosphere 2021, 285, 131466. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Grimont, P.A.D.; Cazares, A.; Grimont, F.; Ageron, E.; Pettigrew, K.A.; Cazares, D.; Njamkepo, E.; Weill, F.-X.; Heinz, E.; et al. The Genus Serratia Revisited by Genomics. Nat. Commun. 2022, 13, 5195. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus Cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, GPP3-0032-2018. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas Aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, G.; de Dios Caballero, J.; Garrido, N.; Valdezate, S.; Cantón, R.; Sáez-Nieto, J.A. Shortcomings of the Commercial MALDI-TOF MS Database and Use of MLSA as an Arbiter in the Identification of Nocardia Species. Front. Microbiol. 2016, 7, 542. [Google Scholar] [CrossRef] [PubMed]
- Emami, K.; Nelson, A.; Hack, E.; Zhang, J.; Green, D.H.; Caldwell, G.S.; Mesbahi, E. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas. Front. Microbiol. 2016, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Garrigos, T.; Neuwirth, C.; Chapuis, A.; Bador, J.; Amoureux, L.; Andre, E.; Barbier, E.; Caillon, J.; Cardot-Martin, E.; Cattoir, V.; et al. Development of a Database for the Rapid and Accurate Routine Identification of Achromobacter Species by Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Clin. Microbiol. Infect. 2021, 27, 126.e1–126.e5. [Google Scholar] [CrossRef] [PubMed]
- Seuylemezian, A.; Aronson, H.S.; Tan, J.; Lin, M.; Schubert, W.; Vaishampayan, P. Development of a Custom MALDI-TOF MS Database for Species-Level Identification of Bacterial Isolates Collected From Spacecraft and Associated Surfaces. Front. Microbiol. 2018, 9, 780. [Google Scholar] [CrossRef] [PubMed]
- Rios, P.; Bezus, B.; Cavalitto, S.; Cavello, I. Production and Characterization of a New Detergent-Stable Keratinase Expressed by Pedobacter Sp. 3.14.7, a Novel Antarctic Psychrotolerant Keratin-Degrading Bacterium. J. Genet. Eng. Biotechnol. 2022, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, Y.; Meenakshisundaram, S.; Saravanan, V.; Balaiah, A. Sustainable Production, Biochemical and Molecular Characterization of Thermo-and-Solvent Stable Alkaline Serine Keratinase from Novel Bacillus Pumilus AR57 for Promising Poultry Solid Waste Management. Int. J. Biol. Macromol. 2020, 163, 135–146. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Okoh, A.I.; Nwodo, U.U. Proteolytic Bacteria Isolated from Agro-Waste Dumpsites Produced Keratinolytic Enzymes. Biotechnol. Rep. 2020, 27, e00483. [Google Scholar] [CrossRef]
- Akram, F.; ul Haq, I.; Hayat, A.K.; Ahmed, Z.; Jabbar, Z.; Baig, I.M.; Akram, R. Keratinolytic Enzyme from a Thermotolerant Isolate Bacillus Sp. NDS-10: An Efficient Green Biocatalyst for Poultry Waste Management, Laundry and Hide-Dehairing Applications. Waste Biomass Valorization 2021, 12, 5001–5018. [Google Scholar] [CrossRef]
- Sharma, I.; Kango, N. Production and Characterization of Keratinase by Ochrobactrum Intermedium for Feather Keratin Utilization. Int. J. Biol. Macromol. 2021, 166, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- González, V.; Vargas-Straube, M.J.; Beys-da-Silva, W.O.; Santi, L.; Valencia, P.; Beltrametti, F.; Cámara, B. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in Streptomyces Sp. G11C. Mar. Drugs 2020, 18, 537. [Google Scholar] [CrossRef] [PubMed]
- Duffeck, C.E.; de Menezes, C.L.A.; Boscolo, M.; da Silva, R.; Gomes, E.; da Silva, R.R. Keratinases from Coriolopsis Byrsina as an Alternative for Feather Degradation: Applications for Cloth Cleaning Based on Commercial Detergent Compatibility and for the Production of Collagen Hydrolysate. Biotechnol. Lett. 2020, 42, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Vranova, V.; Rejsek, K.; Formanek, P. Proteolytic Activity in Soil: A Review. Appl. Soil Ecol. 2013, 70, 23–32. [Google Scholar] [CrossRef]
- Greenfield, L.M.; Puissant, J.; Jones, D.L. Synthesis of Methods Used to Assess Soil Protease Activity. Soil Biol. Biochem. 2021, 158, 108277. [Google Scholar] [CrossRef]
- Greenfield, L.M.; Hill, P.W.; Seaton, F.M.; Paterson, E.; Baggs, E.M.; Jones, D.L. Is Soluble Protein Mineralisation and Protease Activity in Soil Regulated by Supply or Demand? Soil Biol. Biochem. 2020, 150, 108007. [Google Scholar] [CrossRef]
- Khatoon, H.; Solanki, P.; Narayan, M.; Tewari, L.; Rai, J. Role of Microbes in Organic Carbon Decomposition and Maintenance of Soil Ecosystem. Int. J. Chem. Stud. 2017, 5, 1648–1656. [Google Scholar]
- Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2019, 20, 672. [Google Scholar] [CrossRef] [PubMed]
- Skaljac, M.; Vogel, H.; Wielsch, N.; Mihajlovic, S.; Vilcinskas, A. Transmission of a Protease-Secreting Bacterial Symbiont among Pea Aphids via Host Plants. Front. Physiol. 2019, 10, 438. [Google Scholar] [CrossRef]
- Susič, N.; Janežič, S.; Rupnik, M.; Stare, B.G. Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Bacillus Strains Reveals a Wide Range of Possible Virulence Factors. G3 Genes Genomes Genet. 2020, 10, 881–890. [Google Scholar] [CrossRef]
- Hidayati, N.; Nurrahman, N.; Fuad, H.; Munandar, H.; Zilda, D.S.; Ernanto, A.R.; Samiasih, A.; Oedjijono, O.; Ethica, S.N. Bacillus Tequilensis Isolated from Fermented Intestine of Holothuria Scabra Produces Fibrinolytic Protease with Thrombolysis Activity. IOP Conf. Ser. Earth Environ. Sci. 2021, 707, 012008. [Google Scholar] [CrossRef]
- Hossain, T.J.; Das, M.; Ali, F.; Chowdhury, S.I.; Zedny, S.A. Substrate Preferences, Phylogenetic and Biochemical Properties of Proteolytic Bacteria Present in the Digestive Tract of Nile Tilapia (Oreochromis niloticus). AIMS Microbiol. 2021, 7, 528–545. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, J.; Liu, B.; Du, G.; Chen, J. Biochemical Characterization of Three Keratinolytic Enzymes from Stenotrophomonas Maltophilia BBE11-1 for Biodegrading Keratin Wastes. Int. Biodeterior. Biodegrad. 2013, 82, 166–172. [Google Scholar] [CrossRef]
- Wu, W.-L.; Chen, M.-Y.; Tu, I.-F.; Lin, Y.-C.; EswarKumar, N.; Chen, M.-Y.; Ho, M.-C.; Wu, S.-H. The Discovery of Novel Heat-Stable Keratinases from Meiothermus Taiwanensis WR-220 and Other Extremophiles. Sci. Rep. 2017, 7, 4658. [Google Scholar] [CrossRef]
- Kang, E.; Jin, H.; La, J.W.; Sung, J.; Park, S.; Kim, W.; Lee, D. Identification of Keratinases from Fervidobacterium islandicum AW-1 Using Dynamic Gene Expression Profiling. Microb. Biotechnol. 2020, 13, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gong, J.-S.; Qin, J.; Li, H.; Li, H.; Xu, Z.-H.; Shi, J.-S. The Tale of a Versatile Enzyme: Molecular Insights into Keratinase for Its Industrial Dissemination. Biotechnol. Adv. 2020, 45, 107655. [Google Scholar] [CrossRef]
- Bohacz, J.; Korniłłowicz-Kowalska, T. Fungal Diversity and Keratinolytic Activity of Fungi from Lignocellulosic Composts with Chicken Feathers. Process Biochem. 2019, 80, 119–128. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. Proposal of Nine Novel Species of the Bacillus Cereus Group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Gumilar, J.; Triatmojo, S.; Mira Yusiati, L.; Pertiwiningrum, A. Isolation, Identification and Dehairing Activity of Indonesian Native Keratinolytic Bacteria Exiguobacterium Sp. DG1. J. Biotechnol. 2015, 12, 41–48. [Google Scholar]
- Emon, T.H.; Hakim, A.; Chakraborthy, D.; Bhuyan, F.R.; Iqbal, A.; Hasan, M.; Aunkor, T.H.; Azad, A.K. Kinetics, Detergent Compatibility and Feather-Degrading Capability of Alkaline Protease from Bacillus Subtilis AKAL7 and Exiguobacterium Indicum AKAL11 Produced with Fermentation of Organic Municipal Solid Wastes. J. Environ. Sci. Health Part A 2020, 55, 1339–1348. [Google Scholar] [CrossRef]
- Martín-González, D.; Bordel, S.; Solis, S.; Gutierrez-Merino, J.; Santos-Beneit, F. Characterization of Bacillus Strains from Natural Honeybee Products with High Keratinolytic Activity and Antimicrobial Potential. Microorganisms 2023, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Moridshahi, R.; Bahreini, M.; Sharifmoghaddam, M.; Asoodeh, A. Biochemical Characterization of an Alkaline Surfactant-Stable Keratinase from a New Keratinase Producer, Bacillus Zhangzhouensis. Extremophiles 2020, 24, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, A.M.; El-Gamal, M.S.; Ismail, S.A.; Emran, M.A.; Hashem, A.M. Biodegradation of Feather Waste by Keratinase Produced from Newly Isolated Bacillus Licheniformis ALW1. J. Genet. Eng. Biotechnol. 2018, 16, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-X.; Wu, Z.-W.; Cui, H.-Y.; Chai, Y.-N.; Hua, C.-W.; Wang, P.; Li, L.; Yang, T.-Y. Production of Surfactant-Stable Keratinase from Bacillus Cereus YQ15 and Its Application as Detergent Additive. BMC Biotechnol. 2022, 22, 26. [Google Scholar] [CrossRef]
- Devi, S.; Chauhan, A.; Bishist, R.; Sankhyan, N.; Rana, K.; Sharma, N. Production, Partial Purification and Efficacy of Keratinase from Bacillus Halotolerans L2EN1 Isolated from the Poultry Farm of Himachal Pradesh as a Potential Laundry Additive. Biocatal. Biotransform. 2023, 41, 222–242. [Google Scholar] [CrossRef]
- Bernal, C.; Vidal, L.; Valdivieso, E.; Coello, N. Keratinolytic Activity of Kocuria Rosea. World J. Microbiol. Biotechnol. 2003, 19, 255–261. [Google Scholar] [CrossRef]
- Coello, N.; Vidal, L. Kocuria Rosea as a New Feather Degrading Bacteria. In Applied Microbiology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 165–175. [Google Scholar] [CrossRef]
- Bernal, C.; Cairó, J.; Coello, N. Purification and Characterization of a Novel Exocellular Keratinase from Kocuria Rosea. Enzyme Microb. Technol. 2006, 38, 49–54. [Google Scholar] [CrossRef]
- Román-Ponce, B.; Wang, D.; Soledad Vásquez-Murrieta, M.; Feng Chen, W.; Estrada-de los Santos, P.; Hua Sui, X.; Tao Wang, E. Kocuria Arsenatis Sp. Nov., an Arsenic-Resistant Endophytic Actinobacterium Associated with Prosopis Laegivata Grown on High-Arsenic-Polluted Mine Tailing. Int. J. Syst. Evol. Microbiol. 2016, 66, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Bhange, K.; Bhatt, R.; Verma, P. Production of Kertinases Using Chicken Feathers as Substrate by a Novel Multifunctional Strain of Pseudomonas Stutzeri and Its Dehairing Application. Biocatal. Agric. Biotechnol. 2014, 3, 167–174. [Google Scholar] [CrossRef]
- Bach, E.; Daroit, D.J.; Corrêa, A.P.F.; Brandelli, A. Production and Properties of Keratinolytic Proteases from Three Novel Gram-Negative Feather-Degrading Bacteria Isolated from Brazilian Soils. Biodegradation 2011, 22, 1191–1201. [Google Scholar] [CrossRef]
- Thijs, S.; Op De Beeck, M.; Beckers, B.; Truyens, S.; Stevens, V.; Van Hamme, J.D.; Weyens, N.; Vangronsveld, J. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S RRNA Gene Surveys. Front. Microbiol. 2017, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Sample Type | Description |
---|---|---|
KGMa | Winter coat horsehair | Collected during spring shedding from Lesser Poland warm-blooded horse (Equus caballus); height 164 cm, bay with slight feathers, born in 1998 |
KGHa | Winter coat horsehair | Collected during spring shedding from Polish noble half-blood horse (Equus caballus), height 172 cm, seal brown; born in 1997 |
KPMa | Fetlock horsehair | Collected during spring shedding from Lesser Poland warm-blooded horse (Equus caballus); height 164 cm, bay with slight feathers, born in 1998 |
KPH | Fetlock horsehair | Collected during spring shedding from Polish noble half-blood horse (Equus caballus), 172 cm, seal brown; born in 1997 |
KSMa | Full body swab | Full body swab with sterile gauze soaked in 0.9% NaCl from neck, groin, back, withers, and upper rump of Lesser Poland warm-blooded horse (Equus caballus); height 164 cm, bay with slight feathers, born in 1998 |
KSHa | Full body swab | Full body swab with sterile gauze soaked in 0.9% NaCl from neck, groin, back, withers, and upper rump of Polish noble half-blood horse (Equus caballus), height 172 cm, seal brown; born in 1997 |
GA1 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 30 cm |
GA2 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 70 cm |
GB1 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 30 cm, 5 m away from GA site |
GB2 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 70 cm, 5 m away from GA site |
GC1 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 30 cm, 1 m away from GA site |
GC2 | Soil | Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie voivodeship, Central Poland), depth 70 cm, 1 m away from GA site |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlicz, W.; Sypka, M.; Jodłowska, I.; Białkowska, A.M. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules 2024, 29, 3380. https://doi.org/10.3390/molecules29143380
Gerlicz W, Sypka M, Jodłowska I, Białkowska AM. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules. 2024; 29(14):3380. https://doi.org/10.3390/molecules29143380
Chicago/Turabian StyleGerlicz, Wiktoria, Marcin Sypka, Iga Jodłowska, and Aneta M. Białkowska. 2024. "Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste" Molecules 29, no. 14: 3380. https://doi.org/10.3390/molecules29143380
APA StyleGerlicz, W., Sypka, M., Jodłowska, I., & Białkowska, A. M. (2024). Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules, 29(14), 3380. https://doi.org/10.3390/molecules29143380