Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of DES
2.2. Optimization of DES-UA-DLLME Conditions
2.2.1. Single Factor Optimization
Effect of Type and Composition of Extraction Solvent
Effect of Type of Demulsifier Solvent
Effect of pH of Sample Solution
2.2.2. Optimization by BBD
2.3. Extraction Kinetics Studies
2.4. Method Validation
2.4.1. Analytical Performances
2.4.2. Matrix Effect
2.4.3. Analysis of Samples
2.4.4. Comparison with Other Methods
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Sample Preparation
3.4. Synthesis and Characterization of DES
3.5. DES-UA-DLLME Procedure
3.6. GC-MS Analysis
3.7. Box–Behnken Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Yu, X.; Zheng, B.; Zhang, L.; Zhang, F.; Zhang, Y.; Li, J.; Pu, G.; Zhang, L.; Wu, H. Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. BioMed Res. Int. 2021, 1, 5507003. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zeng, S.; Chen, L.; Sun, Q.; Liu, M.; Yang, H.; Ren, S.; Ming, T.; Meng, X.; Xu, H. Updated pharmacological effects of Lonicerae japonicae flos, with a focus on its potential efficacy on coronavirus disease-2019 (COVID-19). Curr. Opin. Pharmacol. 2021, 60, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.Q.; Zhou, H.; Miao, S.; Guo, D.A.; Zhang, X.L.; Hu, Q.; Mao, X.H.; Ji, S. Plant metabolomics for studying the effect of two insecticides on comprehensive constituents of Lonicerae Japonicae Flos. Chin. J. Nat. Med. 2021, 19, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Shi, Y.; Cao, H.; Tong, Z.; Xiao, J.; Liao, M.; Wu, X.; Hua, R. Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes. J. Agric. Food Chem. 2017, 65, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, P.; Gu, M.; Xue, J.; Wu, X. Human health risk assessment of pesticide residues in honeysuckle samples from different planting bases in China. Sci. Total Environ. 2021, 759, 142747. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, H.; Li, M.; Lu, Q.; Zhang, Y.; Yao, S. Template protection of gold nanoclusters for the detection of organophosphorus pesticides. New J. Chem. 2019, 43, 5423–5428. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, G.; Chu, G.; An, X.; Guo, Y.; Sun, X. The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. New J. Chem. 2019, 43, 13816–13826. [Google Scholar] [CrossRef]
- Wang, L.; Kong, W.; Yang, M.; Han, J.; Chen, S. Safety issues and new rapid detection methods in traditional Chinese medicinal materials. Acta Pharm. Sin. B 2015, 5, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, E.; Çabuk, H. Dispersive liquid-liquid microextraction method combined with sugaring-out homogeneous liquid-liquid extraction for the determination of some pesticides in molasses samples. J. Sep. Sci. 2021, 44, 4151–4166. [Google Scholar] [CrossRef]
- Zeiadi, S.; Mogaddam, M.R.A.; Farajzadeh, M.A.; Khandaghi, J. Combination of dispersive solid phase extraction with lighter than water dispersive liquid-liquid microextraction for the extraction of organophosphorous pesticides from milk. Int. J. Environ. Anal. Chem. 2022, 102, 5873–5886. [Google Scholar] [CrossRef]
- Xu, X.; Gao, J.; Zhang, Y.; Zhang, L. Tailored novel multifunctional benzyl-functionalized magnetic ionic liquid for rapid and efficient monitoring of trace fluoroquinolones in food samples. Food Chem. 2023, 404, 134654. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 7, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.; Pinho, S.P.; Coutinho, J.A. Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Mero, A.; Koutsoumpos, S.; Giannios, P.; Stavrakas, I.; Moutzouris, K.; Mezzetta, A.; Guazzelli, L. Comparison of physicochemical and thermal properties of choline chloride and betaine-based deep eutectic solvents: The influence of hydrogen bond acceptor and hydrogen bond donor nature and their molar ratios. J. Mol. Liq. 2023, 377, 121563. [Google Scholar] [CrossRef]
- Shishov, A.; Gorbunov, A.; Moskvin, L.; Bulatov, A. Decomposition of deep eutectic solvents based on choline chloride and phenol in aqueous phase. J. Mol. Liq. 2020, 301, 112380. [Google Scholar] [CrossRef]
- Pateli, I.M.; Abbott, A.P.; Binnemans, K.; Rodriguez Rodriguez, N. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride. RSC Adv. 2020, 10, 28879–28890. [Google Scholar] [CrossRef] [PubMed]
- Lamei, N.; Ezoddin, M.; Abdi, K. Air assisted emulsification liquid-liquid microextraction based on deep eutectic solvent for preconcentration of methadone in water and biological samples. Talanta 2017, 165, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ezoddin, M.; Lamei, N.; Siami, F.; Abdi, K.; Karimi, M.A. Deep Eutectic Solvent Based Air Assisted Ligandless Emulsification Liquid-Liquid Microextraction for Preconcentration of Some Heavy Metals in Biological and Environmental Samples. Bull. Environ. Contam. Toxicol. 2018, 101, 814–819. [Google Scholar] [CrossRef]
- Yuan, K.; Kang, H.; Yue, Z.; Yang, L.; Lin, L.; Wang, X.; Luan, T. Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography-mass spectrometry using subcritical water extraction coupled with dispersed liquid-liquid microextraction and derivatization. Anal. Chim. Acta 2015, 866, 41–47. [Google Scholar] [CrossRef]
- Tomai, P.; Lippiello, A.; D’Angelo, P.; Persson, I.; Martinelli, A.; Di Lisio, V.; Curini, R.; Fanali, C.; Gentili, A. A low transition temperature mixture for the dispersive liquid-liquid microextraction of pesticides from surface waters. J. Chromatogr. A 2019, 1605, 360329. [Google Scholar] [CrossRef]
- Werner, J. Novel deep eutectic solvent-based ultrasounds-assisted dispersive liquid-liquid microextraction with solidification of the aqueous phase for HPLC-UV determination of aromatic amines in environmental samples. Microchem. J. 2020, 153, 104405. [Google Scholar] [CrossRef]
- Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 2018, 245, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Majidi, S.M.; Hadjmohammadi, M.R. Hydrophobic borneol-based natural deep eutectic solvents as a green extraction media for air-assisted liquid-liquid micro-extraction of warfarin in biological samples. J. Chromatogr. A 2020, 1621, 461030. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Xin, R.; Qi, S.; Zeng, C.; Khan, F.I.; Yang, B.; Wang, Y. A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties. Food Chem. 2017, 217, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, Z.; Leitner, W.; de María, P.D. Practical separation of alcohol-ester mixtures using Deep-Eutectic-Solvents. Tetrahedron Lett. 2012, 53, 6968–6971. [Google Scholar] [CrossRef]
- Habibi, E.; Ghanemi, K.; Fallah-Mehrjardi, M.; Dadolahi-Sohrab, A. A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples. Anal. Chim. Acta 2013, 762, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 2015, 1425, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wu, F.Q.; Wu, W.D.; Jin, B.H.; Xie, L.Q.; Feng, W.; Ouyang, G.F. Determination of 27 pesticides in wine by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry. Microchem. J. 2016, 126, 415–422. [Google Scholar] [CrossRef]
- Wang, P.; Luo, M.; Liu, D.; Zhan, J.; Liu, X.; Wang, F.; Zhou, Z.; Wang, P. Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. J. Chromatogr. A 2018, 1535, 9–16. [Google Scholar] [CrossRef]
- Veloo, K.V.; Ibrahim, N.A.S. Solid-phase extraction using chloropropyl functionalized sol-gel hybrid sorbent for simultaneous determination of organophosphorus pesticides in selected fruit samples. J. Sep. Sci. 2020, 43, 3027–3035. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Qi, Y.; Zhang, Z.; Cong, S.; She, Y.; Cao, X. Synthesis of metal-organic framework @molecularly imprinted polymer adsorbents for solid phase extraction of organophosphorus pesticides from agricultural products. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2022, 1188, 123081. [Google Scholar] [CrossRef]
- Özer, E.T.; Osman, B.; Parlak, B. An experimental design approach for the solid phase extraction of some organophosphorus pesticides from water samples with polymeric microbeads. Microchem. J. 2020, 154, 104537. [Google Scholar] [CrossRef]
- Heidari, H.; Ghanbari-Rad, S.; Habibi, E. Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples. J. Food Compos. Anal. 2020, 87, 103389. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Zhao, E.; Wu, J.X.; Li, Y.Q.; Li, B.T. Application of deep eutectic solvents combined with vortex assisted dispersive liquid-liquid microextraction for five organophosphorus pesticides in juice and green tea beverage. Acta Chromatogr. 2022, 34, 53–60. [Google Scholar] [CrossRef]
Experiments | Coded Levels | Response: Recoveries (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 Volume of DES (μL) | X2 Volume of THF (μL) | X3 Ultrasonic Time (min) | Diazinon | Tolclofos-Methyl | Pirimiphos-Methyl | Phosalone | Malathion | Fenthion | Fenamphos | Bolstar | |
1 | −1 (300) | 0 (650) | 1 (10) | 57.1 | 54.7 | 55.3 | 51.4 | 67.7 | 69.4 | 70.4 | 57.3 |
2 | 0 (500) | 0 (650) | 0 (6) | 94.1 | 87.4 | 88.2 | 81.3 | 98.2 | 99.9 | 103.2 | 90.3 |
3 | −1 (300) | 0 (650) | −1 (2) | 53 | 47.2 | 48.8 | 45.6 | 61.1 | 55.6 | 66.6 | 53.8 |
4 | 0 (500) | 0 (650) | 0 (6) | 95.1 | 86.2 | 87.3 | 80.2 | 98.3 | 99.3 | 100.3 | 88.5 |
5 | −1 (300) | 1 (850) | 0 (6) | 45.8 | 38.7 | 39.9 | 33.7 | 50.4 | 54.6 | 54.1 | 42.3 |
6 | 0 (500) | −1 (450) | −1 (2) | 57.7 | 51.6 | 52.8 | 45.7 | 61.5 | 62.7 | 66.5 | 53.5 |
7 | −1 (300) | −1 (450) | 0 (6) | 39.7 | 33.2 | 34.5 | 29.4 | 45.7 | 48.9 | 50.7 | 39.4 |
8 | 0 (500) | 1 (850) | −1 (2) | 55 | 48.6 | 50.1 | 37.5 | 54.6 | 62.3 | 59.3 | 48.7 |
9 | 0 (500) | 0 (650) | 0 (6) | 96.2 | 88.2 | 89.7 | 83.2 | 99.5 | 102.6 | 102.1 | 90.9 |
10 | 0 (500) | 0 (650) | 0 (6) | 96.5 | 88.9 | 90.1 | 83.2 | 96.8 | 100.5 | 103.5 | 91.8 |
11 | 0 (500) | 0 (650) | 0 (6) | 95.2 | 89.2 | 91.8 | 84.5 | 99.2 | 98.5 | 104.6 | 88.5 |
12 | 1 (700) | 1 (850) | 0 (6) | 40.9 | 34.7 | 36.3 | 29.3 | 46.3 | 48.5 | 50.8 | 35.4 |
13 | 1 (700) | 0 (650) | −1 (2) | 56.5 | 56.6 | 57.8 | 53.4 | 67.7 | 69.4 | 73 | 61.4 |
14 | 1 (700) | 0 (650) | 1 (10) | 55.2 | 48.2 | 49.2 | 43.2 | 60.8 | 57.3 | 65.7 | 44.5 |
15 | 0 (500) | 1 (850) | 1 (10) | 59.5 | 51 | 52.6 | 45.1 | 61.3 | 63.2 | 65.3 | 44.6 |
16 | 1 (700) | −1 (450) | 0 (6) | 45.9 | 40.1 | 41.4 | 33.3 | 49.7 | 53.1 | 54.8 | 41.7 |
17 | 0 (500) | −1 (450) | 1 (10) | 56.7 | 48.7 | 49.3 | 39.6 | 54.4 | 61.8 | 58.6 | 44.6 |
Analytes | Pseudo First-Order | Pseudo Second-Order | ||
---|---|---|---|---|
k1 (min−1) | R2 | k2 (g mg−1min−1) | R2 | |
Diazinon | 0.602 | 0.9862 | 0.019 | 0.9982 |
Tolclofos-methyl | 0.427 | 0.8212 | 0.025 | 0.9971 |
Pirimiphos-methyl | 0.516 | 0.8754 | 0.033 | 0.9991 |
Phosalone | 0.474 | 0.6614 | 0.050 | 0.9994 |
Malathion | 0.483 | 0.9757 | 0.027 | 0.9991 |
Fenthion | 0.397 | 0.9033 | 0.038 | 0.9998 |
Fenamiphos | 0.751 | 0.9812 | 0.028 | 0.9990 |
Bolstar | 0.538 | 0.9413 | 0.043 | 0.9995 |
Analytes | Retention Time (min) | Main Fragment Ion (m/z) | Regression Equation A = (a ± SDa)c + (b ± SDb) | Linear Range (ng mL−1) | Correlation Coefficient | LOD (ng mL−1) | LOQ (ng mL−1) | RSD n = 5 Intraday Interday | |
---|---|---|---|---|---|---|---|---|---|
Diazinon | 15.790 | 304 *, 137, 152, 179 | A = (848.76 ± 10.28)c − (134.75 ± 85.53) | 0.2–20.0 | 0.9989 | 0.032 | 0.110 | 3.5 | 4.9 |
Tolclofos-methyl | 19.094 | 265 *, 267, 250, 125 | A = (2551.67 ± 11.20)c + (103.98 ± 21.67) | 0.1–20.0 | 0.9999 | 0.016 | 0.051 | 2.7 | 3.7 |
Pirimiphos-methyl | 20.878 | 290 *, 276, 305, 125 | A = (1756.98 ± 16.90)c + (48.79 ± 13.54) | 0.1–20.0 | 0.9994 | 0.015 | 0.048 | 5.5 | 2.9 |
Phosalone | 22.085 | 182 *, 367 154,112 | A = (693.12 ± 3.18)c + (42.08 ± 6.48) | 0.2–20.0 | 0.9991 | 0.051 | 0.170 | 6.3 | 8.1 |
Malathion | 23.209 | 173 *, 93, 125, 127 | A = (1766.14 ± 10.36)c + (17.25 ± 5.73) | 0.2–20.0 | 0.9991 | 0.014 | 0.045 | 2.6 | 5.3 |
Fenthion | 27.457 | 278 *, 125, 109, 169 | A = (1521.96 ± 5.75)c + (70.43 ± 14.80) | 0.2–20.0 | 0.9997 | 0.018 | 0.060 | 2.5 | 4.8 |
Fenamiphos | 29.872 | 303 *, 154, 80, 217 | A = (1705.25 ± 3.76)c − (32.11 ± 11.23) | 0.2–20.0 | 0.9996 | 0.034 | 0.120 | 4.8 | 4.6 |
Bolstar | 30.611 | 157 *, 146, 118, 129 | A = (1422.77 ± 8.00)c + (95.70 ± 6.59) | 0.2–20.0 | 0.9992 | 0.023 | 0.076 | 5.2 | 3.8 |
Method | Matrix | Linear Range μg/L | LOD μg/L | Recovery (%) | RSD (%) | Ref. |
---|---|---|---|---|---|---|
MSPE | Water | 100–5000 | 16.0–33.0 | 90.2–102.9 | 0.7–10.5 | [29] |
DLLME | Wine | 0.2–25.0 | 0.025–0.88 | 66.7–126.1 | 2.0–27.2 | [30] |
SPE | Fruits | 50.0–1000.0 | 10–70 | 88.33–120.7 | 1.6–3.3 | [31] |
SPE | Agricultural products | 1–200 | 0.01–4.93 | 82.5–123.0 | 1.11–8.24 | [32] |
SPE | Water | 1–50 | 0.002−0.118 | 69 to 139 | 0.58–8.17 | [33] |
DES-DLLME | Fruit juice | 1–500 | 0.070–0.096 | 87.3–116.7 | 5.8–6.6 | [34] |
DES-UA-DLLME | Honeysuckle dew | 0.1–20.0 | 0.014–0.051 | 81.4–104.4 | 1.0–8.6 | this work |
β0 | β1 | β2 | β3 | β12 | β13 | β23 | β11 | β22 | β33 | p-Value of the Mode | Lack of Fit Value | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diazinon | 95.42 | 0.36 | 0.15 | 0.79 | −2.78 | −1.35 | 1.38 | −27.06 | −25.29 | −12.91 | <0.0001 | 0.9720 | 0.9995 |
Tolclofos-methyl | 87.98 | 0.73 | −0.075 | −0.17 | −2.73 | −3.98 | 1.32 | −24.80 | −26.50 | −11.50 | <0.0001 | 0.9947 | 0.9991 |
Pirimiphos-methyl | 89.42 | 0.77 | 0.11 | −0.39 | −2.62 | −3.77 | 1.50 | −24.91 | −26.48 | −11.74 | <0.0001 | 0.9956 | 0.9982 |
Phosalone | 82.48 | −0.11 | −0.30 | −0.36 | −2.08 | −4.00 | 3.43 | −22.32 | −28.74 | −11.76 | <0.0001 | 0. 6362 | 0.9975 |
Malathion | 98.40 | −0.050 | 0.16 | −0.088 | −2.03 | −3.38 | 3.45 | −22.00 | −28.38 | −12.07 | <0.0001 | 0.9756 | 0.9993 |
Fenthion | 100.16 | −0.025 | 0.26 | 0.21 | −2.58 | −6.48 | 0.45 | −24.23 | −24.66 | −13.00 | <0.0001 | 0.8418 | 0.9982 |
Fenamiphos | 102.74 | 0.31 | −0.14 | −0.67 | −1.85 | −2.78 | 3.47 | −21.82 | −28.32 | −11.99 | <0.0001 | 0.9817 | 0.9984 |
Bolstar | 90.00 | −1.22 | −1.02 | −0.30 | −2.30 | −5.10 | 1.20 | −21.95 | −28.35 | −13.80 | <0.0001 | 0.9842 | 0.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Wu, X.; Zhang, F.; Cao, Y.; Tan, Z.; Xiao, S.; Wu, L. Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples. Molecules 2024, 29, 3423. https://doi.org/10.3390/molecules29143423
Guo K, Wu X, Zhang F, Cao Y, Tan Z, Xiao S, Wu L. Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples. Molecules. 2024; 29(14):3423. https://doi.org/10.3390/molecules29143423
Chicago/Turabian StyleGuo, Kangmiao, Xiaokun Wu, Fan Zhang, Ying Cao, Zenglei Tan, Shuwen Xiao, and Lijie Wu. 2024. "Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples" Molecules 29, no. 14: 3423. https://doi.org/10.3390/molecules29143423
APA StyleGuo, K., Wu, X., Zhang, F., Cao, Y., Tan, Z., Xiao, S., & Wu, L. (2024). Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples. Molecules, 29(14), 3423. https://doi.org/10.3390/molecules29143423