Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Compounds
2.2. Characterization of Identified Compounds
2.2.1. Alkanes
2.2.2. Saturated Fatty Acids
2.2.3. Fatty Alcohols
2.2.4. Fatty Acid Esters
2.2.5. Phthalate Esters
2.2.6. Fatty Acid Amides
2.2.7. Low-Molecular-Mass Compounds
2.2.8. Other Compounds
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Preparation
3.3. GC/MS Analysis
3.4. Data Processing and Compound Identification Algorithm
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gordon, S.; Hsieh, Y.-L. Cotton: Science and Technology; Woodehead Publishing Limited: Abington, UK, 2007; pp. 3–95. [Google Scholar]
- Tonn, W.H.; Schoch, E.P. COTTON WAX... Properties and Constituents. Ind. Eng. Chem. Anal. Ed. 1946, 38, 413–415. [Google Scholar] [CrossRef]
- Conrad, C.M. Determination of Wax in Cotton Fiber a New Alcohol Extraction Method. Ind. Eng. Chem. Anal. Ed. 1944, 16, 745–748. [Google Scholar] [CrossRef]
- Kettering, J.H. Isopropyl Alcohol in Cotton Wax Determination. Ind. Eng. Chem. Anal. Ed. 1946, 18, 275. [Google Scholar] [CrossRef]
- Hawlader, M.R.; Hossain, M.M. Lubrication and Tribological Problem in Textile Industry. Int. J. Adv. Res. Sci. Eng. 2021, 10, 1–16. [Google Scholar]
- Uğur, Ş.S.; Karaboyacı, M.; Boguniewicz-Zablocka, J. Influence of Cotton Bleaching Methods on the Parameters of Generated Textile Industrial Wastewater. Sustainability 2023, 15, 15592. [Google Scholar] [CrossRef]
- Kakande, B. Allergies in the Workplace. Curr. Allergy Clin. Immunol. 2013, 26, 26–30. [Google Scholar]
- Licina, D.; Morrison, G.C.; Bekö, G.; Weschler, C.J.; Nazaroff, W.W. Clothing-Mediated Exposures to Chemicals and Particles. Environ. Sci. Technol. 2019, 53, 5559–5575. [Google Scholar] [CrossRef]
- Lentini, J.; Dolan, J.; Cherry, C. The Petroleum-Laced Background. J. Forensic Sci. 2000, 45, 968–989. [Google Scholar] [CrossRef]
- Carlsson, J.; Iadaresta, F.; Eklund, J.; Avagyan, R.; Östman, C.; Nilsson, U. Suspect and Non-Target Screening of Chemicals in Clothing Textiles by Reversed-Phase Liquid Chromatography/Hybrid Quadrupole-Orbitrap Mass Spectrometry. Anal. Bioanal. Chem. 2022, 414, 1403–1413. [Google Scholar] [CrossRef]
- Klaschka, U. Natural Personal Care Products—Analysis of Ingredient Lists and Legal Situation. Environ. Sci. Eur. 2016, 28, 8. [Google Scholar] [CrossRef]
- OEKO-TEX International Association for Research and Testing in the Field of Textile and Leather Ecology, OEKO-TEX Standard STANDARD 100, Edition 02.2024. Available online: https://www.oeko-tex.com/importedmedia/downloadfiles/OEKO-TEX_STANDARD_100_Standard_EN_DE.pdf (accessed on 16 April 2024).
- Fawzy Ibrahim, S. The Eco-Legalization and Quality Requirements for Textiles, State of the Art and Current Developments. J. Meas. Sci. Appl. JMSA 2022, 2, 97–120. [Google Scholar]
- Cai, J.; Zhu, F.; Ruan, W.; Liu, L.; Lai, R.; Zeng, F.; Ouyang, G. Determination of Organochlorine Pesticides in Textiles Using Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry. Microchem. J. 2013, 110, 280–284. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, M.; Ruan, W.; Zhu, F.; Ouyang, G. Determination of Organophosphorus Pesticides in Ecological Textiles by Solid-Phase Microextraction with a Siloxane-Modified Polyurethane Acrylic Resin Fiber. Anal. Chim. Acta 2012, 736, 62–68. [Google Scholar] [CrossRef]
- Zhu, F.; Ruan, W.; He, M.; Zeng, F.; Luan, T.; Tong, Y.; Lu, T.; Ouyang, G. Application of Solid-Phase Microextraction for the Determination of Organophosphorus Pesticides in Textiles by Gas Chromatography with Mass Spectrometry. Anal. Chim. Acta 2009, 650, 202–206. [Google Scholar] [CrossRef]
- Cai, J.; Chen, G.; Qiu, J.; Jiang, R.; Zeng, F.; Zhu, F.; Ouyang, G. Hollow Fiber Based Liquid Phase Microextraction for the Determination of Organochlorine Pesticides in Ecological Textiles by Gas Chromatography-Mass Spectrometry. Talanta 2016, 146, 375–380. [Google Scholar] [CrossRef]
- Pahade, P.; Bose, D.; Peris-Vicente, J.; Goberna-Bravo, M.Á.; Albiol Chiva, J.; Esteve Romero, J.; Carda-Broch, S.; Durgbanshi, A. Screening of Some Banned Aromatic Amines in Textile Products from Indian Bandhani and Gamthi Fabric and in Human Sweat Using Micellar Liquid Chromatography. Microchem. J. 2021, 165, 106134. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Y. Determination of Chlorobenzenes in Textiles by Pressurized Hot Water Extraction Followed by Vortex-Assisted Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2013, 1319, 27–34. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, M.; Sun, Z.; Li, A.; Xu, L.; Mu, J.; Lu, L. Multiresidue Determination of 77 Pesticides in Textiles by Gas Chromatography-Mass Spectrometry. J. Chromatogr. Sci. 2007, 45, 375–399. [Google Scholar] [CrossRef]
- Hrouzková, S.; Szarka, A. Development of a Modified Quechers Procedure for the Isolation of Pesticide Residues from Textile Samples, Followed by GC–MS Determination. Separations 2021, 8, 106. [Google Scholar] [CrossRef]
- Luongo, G.; Thorsén, G.; Östman, C. Quinolines in Clothing Textiles-A Source of Human Exposure and Wastewater Pollution? Anal. Bioanal. Chem. 2014, 406, 2747–2756. [Google Scholar] [CrossRef]
- EN 17132:2019; Textiles and Textile Products—Determination of Polycyclic Aromatic Hydrocarbons (PAH), Method Using Gas Chromatography. European Committee for Standardization: Brussels, Belgium, 2019.
- EN ISO 14389:2002; Textiles—Determination of the Phthalate Content—Tetrahydrofuran Method. European Committee for Standardization: Brussels, Belgium, 2002.
- EN ISO 17881-1:2016; Textiles—Determination of Certain Flame Retardants Part 1: Brominated Flame Retardants. European Committee for Standardization: Brussels, Belgium, 2016.
- EN ISO 22818:2021; Textiles—Determination of Short-Chain Chlorinated Paraffins (SCCP) and Middle-Chain Chlorinated Paraffins (MCCP) in Textile Products out of Different Matrices by Use of Gas Chromatography Negative Ion Chemical Ionization Mass Spectrometry (GC-NCI-MS). European Committee for Standardization: Brussels, Belgium, 2021.
- Freire, C.; Molina-Molina, J.M.; Iribarne-Durán, L.M.; Jiménez-Díaz, I.; Vela-Soria, F.; Mustieles, V.; Arrebola, J.P.; Fernández, M.F.; Artacho-Cordón, F.; Olea, N. Concentrations of Bisphenol A and Parabens in Socks for Infants and Young Children in Spain and Their Hormone-like Activities. Environ. Int. 2019, 127, 592–600. [Google Scholar] [CrossRef]
- Hu, T.T.; Lu, C.M.; Li, H.; Zhang, Z.X.; Zhao, Y.H.; Li, J. Determination of Eleven Organophosphorus Pesticide Residues in Textiles by Using HPLC-HRMS. Anal. Sci. 2017, 33, 1027–1032. [Google Scholar] [CrossRef]
- Szadkowska, D.; Zawadzki, J.; Kozakiewicz, P.; Radomski, A. Identification of Extractives from Various Poplar Species. Forests 2021, 12, 647. [Google Scholar] [CrossRef]
- Kuki, Á.; Zelei, G.; Nagy, L.; Nagy, T.; Zsuga, M.; Kéki, S. Rapid Mapping of Various Chemicals in Personal Care and Healthcare Products by Direct Analysis in Real Time Mass Spectrometry. Talanta 2019, 192, 241–247. [Google Scholar] [CrossRef]
- Cui, D.; Cox, J.; Mejias, E.; Ng, B.; Gardinali, P.; Bagner, D.M.; Quinete, N. Evaluating Non-Targeted Analysis Methods for Chemical Characterization of Organic Contaminants in Different Matrices to Estimate Children’s Exposure. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 589–601. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Dąbrowski, Ł. Evaluation of a Simplified Method for GC/MS Qualitative Analysis of Polycyclic Aromatic. Molecules 2020, 25, 3727. [Google Scholar] [CrossRef]
- Bizzo, H.R.; Brilhante, N.S.; Nolvachai, Y.; Marriott, P.J. Use and Abuse of Retention Indices in Gas Chromatography. J. Chromatogr. A 2023, 1708, 464376. [Google Scholar] [CrossRef]
- Luongo, G.; Avagyan, R.; Hongyu, R.; Östman, C. The Washout Effect during Laundry on Benzothiazole, Benzotriazole, Quinoline, and Their Derivatives in Clothing Textiles. Environ. Sci. Pollut. Res. 2016, 23, 2537–2548. [Google Scholar] [CrossRef]
- Sanchez Armengol, E.; Blanka Kerezsi, A.; Laffleur, F. Allergies Caused by Textiles: Control, Research and Future Perspective in the Medical Field. Int. Immunopharmacol. 2022, 110, 109043. [Google Scholar] [CrossRef]
- The Wet Processing of Cotton Scouring, Bleaching, Dyeing, & Finishing. Available online: https://csitc.org/sitecontent/RTCWA/internal_wa/02_Activites_du_RTC/022_Formation/0222_documents_de_formation/02222_TICS/Yarn_Fabric_Processing/0222252_TICS_wet_processing.pdf (accessed on 16 April 2024).
- De Olano, D.G.; Subiza, J.L.; Civantos, E. Cutaneous Allergy to Cotton. Ann. Allergy Asthma Immunol. 2009, 102, 263–264. [Google Scholar] [CrossRef]
- Değer, G.; Demirdas, A.B.; Akbaba, D.; Afacan, M.Y. Allergic Contact Dermatitis in the Right Forearm Following Splint Application for Distal Radius Fracture: A Rare Case of Plaster Cotton Allergy. Cureus 2024, 16, e51802. [Google Scholar] [CrossRef]
- Wong, D.A.; Watson, A.B. Allergic Contact Dermatitis Due to Benzalkonium Chloride in Plaster of Paris. Australas. J. Dermatol. 2001, 42, 33–35. [Google Scholar] [CrossRef]
- Svedman, C.; Engfeldt, M.; Malinauskiene, L. Textile Contact Dermatitis: How Fabrics Can Induce Dermatitis. Curr. Treat. Options Allergy 2019, 6, 103–111. [Google Scholar] [CrossRef]
- Lovell, C.R.; Staniforth, P. Allergic Contact Dermatitis from Benzalkonium Chloride in Plaster of Paris. Contact Dermat. 1996, 35, 371–372. [Google Scholar]
- Lovell, C.R.; Staniforth, P. Contact Allergy to Benzalkonium Chloride in Plaster of Paris. Contact Dermat. 1981, 7, 343–344. [Google Scholar] [CrossRef]
- Bondada, B.R.; Oosterhuis, D.M.; Murphy, J.B.; Kim, K.S. Effect of Water Stress on the Epicuticular Wax Composition and Ultrastructure of Cotton (Gossypium hirsutum L.) Leaf, Bract, and Boll. Environ. Exp. Bot. 1996, 36, 61–65. [Google Scholar] [CrossRef]
- Kezic, S.; Kruse, J.; Jakasa, I.; Boogaard, P.; Minsavage, G. Review of Dermal Effects and Uptake of Petroleum Hydrocarbons; CONCAWE Report 5/10; CONCAWE: Brussels, Belgium, 2010. [Google Scholar]
- Baliota, G.V.; Athanassiou, C.G. Use of Paraffin Oils in Agriculture and beyond: Back to the Future. Environ. Sci. Pollut. Res. 2023, 30, 2392–2405. [Google Scholar] [CrossRef]
- Najar-Rodríguez, A.J.; Walter, G.H.; Mensah, R.K. The Efficacy of a Petroleum Spray Oil against Aphis Gossypii Glover on Cotton. Part 1: Mortality Rates and Sources of Variation. Pest Manag. Sci. 2007, 63, 586–595. [Google Scholar] [CrossRef]
- Mensah, R.; Liang, W.; Coates, R.W. Petroleum Spray Oils-Lubricating the Path to IPM: Part I. Use of Petroleum Spray Oil as Insecticide to Control Helicoverpa Spp on Commercial Cotton Fields. In Integration of Biological and Microbial Control with Transgenic Bt Cotton View Project; Australian Cotton Research Institute: Narrabi, Australia, 1997; pp. 675–682. [Google Scholar]
- Mensah, R.K.; Liang, W.; Gibb, D.; Coates, R.; Johnson, D. Improving the Efficacy of Nuclear Polyhedrosis Virus and Bacillus Thuringiensis against Helicoverpa Spp. with Ultra-Violet Light Protected Petroleum Spray Oils on Cotton Crops in Australia. Int. J. Pest Manag. 2005, 51, 101–109. [Google Scholar] [CrossRef]
- Corazza, M.; Catani, M.; Franchina, F.A.; Cavazzini, A.; Bianchi, A.; Borghi, A.; Pacetti, L.; Schettini, N. Allergic Contact Dermatitis to Petrolatum: A Timeless Problem. Dermatitis 2024. [Google Scholar] [CrossRef]
- Conti, A.; Manzini, B.M.; Schiavi, M.E.; Motolese, A. Sensitization to White Petrolatum Used as a Vehicle for Patch Testing. Contact Dermat. 1995, 33, 201–202. [Google Scholar] [CrossRef]
- Tam, C.C.; Elston, D.M. Allegric Contact Dermatitis Caused by White Petrolatum on Damaged Skin. Dermatitis 2006, 17, 201–203. [Google Scholar] [CrossRef]
- McLeod, E.D. Textile Assistants from Fatty Acids and Their Derivatives. J. Am. Oil Chem. Soc. 1954, 31, 587–589. [Google Scholar] [CrossRef]
- PubChem (nih.gov). Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 16 April 2024).
- Wahlberg, J.E.; Lindberg, M. Nonanoic Acid—An Experimental Irritant. Contact Dermat. 2003, 49, 117–123. [Google Scholar] [CrossRef]
- Haz-Map Database (Information on Hazardous Chemicals and Occupational Diseases). Available online: https://haz-map.com/ (accessed on 16 April 2024).
- Johnson, W.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Hill, R.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Pelargonic Acid (Nonanoic Acid) and Nonanoate Esters. Int. J. Toxicol. 2011, 30, 228S–269S. [Google Scholar] [CrossRef]
- Ray, T.; Kellum, R.E. Acne Vulgaris. Studies in Pathogenesis: Free Fatty Acid Irritancy in Patients with and without Acne. J. Investig. Dermatol. 1971, 57, 6–9. [Google Scholar] [CrossRef]
- Stearin/Palmitic Acid (C18/C16)—Ataman Kimya. Available online: https://www.atamanchemicals.com/stearic-palmitic-acid-c18-c16_u30006/ (accessed on 16 April 2024).
- Tomasino, C. Chemistry & Technology of Fabric Preparation & Finishing; Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University: Raleigh, NC, USA, 1992. [Google Scholar]
- Hassabo, A.; Hegazy, B.; Sediek, A.; Saad, F.; Ghazal, H. The Use of Non-Ionic Surfactants in the Textiles Industry. J. Text. Color. Polym. Sci. 2023, 20, 217–226. [Google Scholar] [CrossRef]
- Igarashi, T.; Nakamura, K. Mechanism of Softening Effect of Fabric Softener. J. Mater. Sci. Res. 2018, 8, 35. [Google Scholar] [CrossRef]
- Guenin, E.P.; Smith, L.C. Method of Controlling Viscosity of Fabric Softeners. European Patent Applications 95302910.5, 5 September 1995. [Google Scholar]
- Hinchliffe, D.J.; Naoumkina, M.; Thyssen, G.N.; Nam, S.; Chang, S.C.; McCarty, J.C.; Jenkins, J.N. Multi-Omics Analysis of Pigmentation Related to Proanthocyanidin Biosynthesis in Brown Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2024, 15, 1372232. [Google Scholar] [CrossRef]
- Veenstra, G.; Webb, C.; Sanderson, H.; Belanger, S.E.; Fisk, P.; Nielsen, A.; Kasai, Y.; Willing, A.; Dyer, S.; Penney, D.; et al. Human Health Risk Assessment of Long Chain Alcohols. Ecotoxicol. Environ. Saf. 2009, 72, 1016–1030. [Google Scholar] [CrossRef]
- G Hassabo, A. Saturated Fatty Acids Derivatives as Assistants Materials for Textile Processes. J. Text. Sci. Fash. Technol. 2018, 1, 516. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Patel, N.; Warshaw, E.M.; Dekoven, J.G.; Atwater, A.R.; Belsito, D.V.; Dunnick, C.A.; Houle, M.C.; Reeder, M.J.; Maibach, H.I.; et al. Lanolin Allergic Reactions: North American Contact Dermatitis Group Experience, 2001 to 2018. Dermatitis 2022, 33, 193–199. [Google Scholar] [CrossRef]
- Dobler, D.; Schmidts, T.; Wildenhain, S.; Seewald, I.; Merzhäuser, M.; Runkel, F. Impact of Selected Cosmetic Ingredients on Common Microorganisms of Healthy Human Skin. Cosmetics 2019, 6, 45. [Google Scholar] [CrossRef]
- Syed, M.H.; Zahari, M.A.K.M.; Qutaba, S.; Abdullah, N.; Syed, L.; Abro, Z. Greenly Prepared Antimicrobial Cotton Fabrics Using Bioactive Agents from Cupressaceae Pods. Surf. Innov. 2022, 12, 30–42. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic acid esters: Natural sources and biological activities. Toxins 2021, 13, 459. [Google Scholar] [CrossRef]
- Xue-yang, L.; Yong-chao, Y.; Xin, C.; Li, S.; Zhu, X.; Tang, S. Determination of Phthalate Esters in Textiles by Solid Phase Extraction and Gas Chromatography–Mass Spectrometry. Anal. Lett. 2015, 48, 2544–2552. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J.L. Human Health Risks Due to Exposure to Inorganic and Organic Chemicals from Textiles: A Review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Bølling, A.K.; Sripada, K.; Becher, R.; Bekö, G. Phthalate Exposure and Allergic Diseases: Review of Epidemiological and Experimental Evidence. Environ. Int. 2020, 139, 105706. [Google Scholar] [CrossRef]
- Chowdhury, M.M.U.; Statham, B.N. Allergic Contact Dermatitis from Dibutyl Phthalate and Benzalkonium Chloride in Timodine® Cream. Contact Dermat. 2002, 46, 57. [Google Scholar] [CrossRef]
- Ahn, K. The Detrimental Effects of Phthalates on Allergic Diseases. Allergy Asthma Immunol. Res. 2022, 14, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Jeon, B.H.; Kim, J.; Kim, Y.M.; Han, Y.; Ahn, K.; Cheong, H.K. Exposure to Phthalates and Bisphenol A Are Associated with Atopic Dermatitis Symptoms in Children: A Time-Series Analysis. Environ. Health A Glob. Access Sci. Source 2017, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yun, H.; Yoon, C.; Lee, K.; Zoh, K.D. Suspect and Non-Target Screening of Chemicals in Household Cleaning Products, and Their Toxicity Assessment. Environ. Eng. Res. 2024, 29, 230123. [Google Scholar] [CrossRef]
- Osmundsen, P.E. Contact Urticaria from Nickel and Plastic Additives (Butylhydroxytoluene, Oleylamide). Contact Dermat. 1980, 6, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Naumoska, K.; Jug, U.; Metličar, V.; Vovk, I. Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers. Foods 2020, 9, 549. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency ECHA Database. Available online: https://echa.europa.eu/information-on-chemicals (accessed on 16 April 2024).
- Marroquin, J.; Kiomourtzoglou, M.A.; Scranton, A.; Pollack, A.Z. Chemicals in Menstrual Products: A Systematic Review. BJOG An Int. J. Obstet. Gynaecol. 2023, 131, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W. Final Report on the Safety Assessment of Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate. Int. J. Toxicol. 2002, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, Ł. Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS. Molecules 2020, 25, 4419. [Google Scholar] [CrossRef]
No | RT [min] | Name | CAS RN | RI Chr | RI DB | MH (PARADISE) | AMDIS | Samples |
---|---|---|---|---|---|---|---|---|
1 | 7.05 | benzyl alcohol | 100-51-6 | 1035 | 1036 ± 4 | 93 | 950 | F:5 |
2 | 9.80 | 2-propylheptan-1-ol | 10042-59-8 | 1212 | 1294 ev | (914) | 940 | F:5,7 |
3 | 9.92 | 2-phenoxyethanol | 122-99-6 | 1222 | 1225 ± 3 | 90 | 916 | F:2,5 |
4 | 10.10 | benzothiazole | 95-16-9 | 1234 | 1229 ± 8 | 91 | 958 | F:2 |
5 | 10.66 | nonanoic acid | 112-05-0 | 1272 | 1273 ± 7 | 81 | 923 | F:2,8; P:1,2,5–7 |
6 | 11.96 | n-decanoic acid | 334-48-5 | 1364 | 1373 ± 6 | 80 | 923 | Ft:2,8; Pt:1,2,5–7 |
7 | 13.59 | dodecan-1-ol | 112-53-8 | 1474 | 1473 ± 4 | 88 | 951 | all, except: F:3,4 |
8 | 15.11 | dodecanoic acid | 143-07-7 | 1568 | 1568 ± 3 | 79 | 854 | F:2 |
9 | 17.03 | tetradecan-1-ol | 112-72-1 | 1677 | 1676 ± 4 | 89 | 940 | F:6,9; P:1,2,5–7 |
10 | 18.72 | tetradecanoic acid | 544-63-8 | 1770 | 1768 ± 5 | 86 | 915 | F:2 |
11 | 20.36 | diisobutyl phthalate | 84-69-5 | 1859 | 1870 ± 4 | 94 | 939 | F:1–3; P:1,2,5–7 |
12 | 20.83 | hexadecan-1-ol | 36653-8-4 | 1882 | 1880 ± 3 | 86 | 958 | F:2,5–7; P:1–3,5–7 |
13 | 22.11 | dibuthyl phthalate | 84-74-2 | 1954 | 1965 ± 6 | 92 | 962 | F:1–3,8; P:1,2,4–6 |
14 | 22.37 | hexadecanoic acid | 57-10-3 | 1969 | 1968 ± 7 | 82 | 958 | F:all; P:all |
15 | 24.14 | 9-octadecen-1-ol, (Z)- | 143-28-2 | 2064 | 2063 ± 3 | 90 | 955 | P:1,3,5–7 |
16 | 24.99 | dimantine | 124-28-7 | 2115 | 2096 ± na | 83 | 921 | F:3 |
17 | 24.53 | octadecane-1-ol | 112-92-5 | 2086 | 2082 ± 2 | 91 | 964 | F:1,2,5,6,9; P:1,3,7 |
18 | 25.92 | octadecanoic acid | 57-11-4 | 2168 | 2172 ± 7 | 85 | 945 | F:all; P:all |
19 | 26.09 | hexadecanamide | 629-54-9 | 2179 | 2184 ± 2 | 83 | 873 | F:1,6 |
20 | 29.28 | 9-octadecenamide, (Z-) | 301-02-0 | 2363 | 2386 ± 11 | 80 | 892 | F:1 |
21 | 29.66 | octadecanamide | 124-26-5 | 2392 | 2374 ± 25 | 76 | 834 | F:3–6 |
22 | 29.59 | hexanedioic acid bis(2-ethylhexyl)ester | 103-23-1 | 2387 | 2398 ± 16 | 89 | 922 | P:5 |
23 | 31.40 | pentacosane | 629-99-2 | 2502 | 2500 | 80 | 900 | F:1,9 |
24 | 31.76 | hexadecanoic acid 2-hydroxy-1-(hydroxymethyl)ethyl ester | 23470-00-0 | 2526 | 2519 | 89 | 685 | F:8 |
25 | 32.93 | hexacosane | 630-01-3 | 2603 | 2600 | 77 | 928 | F:1–9; P:7 |
26 | 34.39 | heptacosane | 593-49-7 | 2703 | 2700 | (886) | 882 | F:1–6,8,9; P:7 |
27 | 35.80 | octacosane | 630-02-4 | 2803 | 2800 | (911) | 891 | F:1–6,8,9 |
28 | 37.16 | nonacosane | 630-03-5 | 2902 | 2900 | (786) | 850 | F:1–9; P:1–3,5,7 |
29 | 38.48 | triacontane | 638-68-6 | 3008 | 3000 | (706) | 890 | F:1–9; Pt:1–7 |
30 | 39.72 | hentriacontane | 630-04-6 | 3100 | 3100 | (840) | 744 | F:1,9 |
31 | 40.14 | octacosan-1-ol | 557-61-9 | 3132 | 3118 ± 2 | 87 | 949 | F:2–8; P:all |
32 | 42.48 | γ-sitosterol | 83-47-6 | 3312 | 3221 ± 31 | 64 (930) | 955 | F:2–8; P:all |
33 | 42.96 | hexadecanoic acid hexadecyl ester | 540-10-3 | 3367 | 3364 ± na | 89 | 936 | F:6,7; P:3,4 |
34 | 43.76 | sigmast-4-en-3-one | 1058-61-3 | 3434 | 3447 ± 12 | 86 | 862 | F:2 |
35 | 45.50 | hexadecanoic acid, octadecyl ester | 2598-99-4 | 3568 | 3546 ± na | 77 | 866 | F:1,2,4,9; P:2–5,7 |
36 | 48.83 | octadecanoic acid octadecyl ester | 2778-96-3 | 3767 | 3764 ± na | 83 | 873 | F:2,9; P:2,5 |
Sample Label | Sample Type | Country | Notes |
---|---|---|---|
F1 | cotton towel | China | Disposable face washing towel |
F2 | panties | Bangladesh | |
F3 | children’s panties | China | Bio cotton, 5% elastan |
F4 | boys’ t-shirt | Bangladesh | |
F5 | children’s panties | China | “wash before use” on the label |
F6 | children’s panties | Bangladesh | Organic cotton |
F7 | cotton sticks | China | |
F8 | men’s T-shirt | Bangladesh | |
F9 | men’s shirt | Slovakia | |
P1 | cotton pads | EU | |
P2 | cotton pads | EU | |
P3 | cotton pads | France | Bio cotton |
P4 | make-up removal wipes | China | |
P5 | cotton pads | EU | |
P6 | cotton pads | Poland | |
P7 | cotton pads | Poland | Organic cotton |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, Ł. Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment. Molecules 2024, 29, 3584. https://doi.org/10.3390/molecules29153584
Dąbrowski Ł. Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment. Molecules. 2024; 29(15):3584. https://doi.org/10.3390/molecules29153584
Chicago/Turabian StyleDąbrowski, Łukasz. 2024. "Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment" Molecules 29, no. 15: 3584. https://doi.org/10.3390/molecules29153584
APA StyleDąbrowski, Ł. (2024). Non-Target Screening of Chemicals in Selected Cotton Products by GC/MS and Their Safety Assessment. Molecules, 29(15), 3584. https://doi.org/10.3390/molecules29153584