A Series of Lanthanide Coordination Polymers as Luminescent Sensors for Selective Detection of Inorganic Ions and Nitrobenzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Description of Complexes 1–7
2.2. Luminescent Properties
2.3. Detection of Metal Ions
2.4. Sensing of Organic Small Molecules
2.5. PXRD and FT-IR
2.6. Theoretical Studies
2.7. Hirshfeld Surface Analysis
3. Materials and Methods
3.1. Materials and General Method
3.2. Synthesis of Complexes
3.3. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Bu, X.; Wu, T.; Zheng, S.T.; Wang, L.; Feng, P. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nat. Commun. 2013, 4, 2344. [Google Scholar] [CrossRef]
- Boyd, S.A.; Sheng, G.; Teppen, B.J.; Johnston, C.T. Mechanisms for the Adsorption of Substituted Nitrobenzenes by Smectite Clays. Environ. Sci. Technol. 2001, 35, 4227–4234. [Google Scholar] [CrossRef]
- Li, Z.; Zhan, Z.; Hu, M. A luminescent terbium coordination polymer as a multifunctional water-stable sensor for detection of Pb2+ ions, PO43− ions, Cr2O72− ions, and some amino acids. CrystEngComm 2020, 22, 6727. [Google Scholar] [CrossRef]
- Gahlaut, P.S.; Gautam, D.; Yadav, K.; Barun, J. Supramolecular Gels for the Sensing and Extraction of Heavy Metal Ions from Wastewater. J. Mol. Struct. 2023, 1272, 134152. [Google Scholar] [CrossRef]
- Fayed, T.A.; El-Nahass, M.N.; El-Daly, H.A.; Shokry, A.A. Development of nanomaterial chemosensors for toxic metal ions sensing. Appl. Organomet. Chem. 2019, 33, 4868. [Google Scholar] [CrossRef]
- Mandal, S.; Das, A.; Biswas, A.; Halder, A.; Mondal, D.; Mondal, T.K. Adaptable Biomolecule-Interactive Dual Colorimetric Chemosensor for Cu2+ and Pd2+: Insight from Crystal Structure, Photophysical Investigations, Real-Time Sampling, and Molecular Logic Circuits. Cryst. Growth Des. 2024, 24, 1051–1067. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Goswami, R.; Smith, V.J.; Bajaj, H.C.; Neogi, S. Pore wall-functionalized luminescent Cd (II) framework for selective CO2 adsorption, highly specific 2, 4, 6-trinitrophenol detection, and colorimetric sensing of Cu2+ ions. ACS Sustain. Chem. Eng. 2018, 6, 10295–10306. [Google Scholar] [CrossRef]
- Huang, L.; Ran, Z.; Liu, X.; Huang, C.M.; Qin, Q.P.; Zhou, J. One Luminescent Cadmium Iodide with Free Bifunctional Azole Sites as a Triple Sensor for Cu2+, Fe3+, and Cr2O72− Ions. Inorg. Chem. 2022, 61, 14156. [Google Scholar] [CrossRef]
- Udhayakumari, D.; Naha, S.; Velmathi, S. Colorimetric and fluorescent chemosensors for Cu 2+. A comprehensive review from the years. Anal. Methods-UK. 2017, 9, 552. [Google Scholar] [CrossRef]
- Hao, Z.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Su, S.; Zhang, H. One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. J. Mater Chem. A. 2013, 1, 11043. [Google Scholar] [CrossRef]
- Chen, L.; Cui, X.; Cheng, H.; Chen, X.; Song, M.; Tang, M.; Wu, Y. Syntheses, structures of N-(substituted)-2-aza-[3]-ferrocenophanes and their application as redox sensor for Cu2+ ion. Appl. Organomet. Chem. 2012, 26, 449. [Google Scholar] [CrossRef]
- Mohandoss, S.; Stalin, T. A new fluorescent PET sensor probe for Co2+ ion detection: Computational, logic device and living cell imaging applications. RSC Adv. 2017, 7, 16581. [Google Scholar] [CrossRef]
- Khan, I.M.; Shakya, S. Exploring Colorimetric Real-Time Sensing Behavior of a Newly Designed CT Complex toward Nitrobenzene and Co2+: Spectrophotometric, DFT/TD-DFT, and Mechanistic Insights. ACS Omega 2019, 4, 9983. [Google Scholar] [CrossRef]
- Maity, D.; Govindaraju, T. Highly selective visible and near-IR sensing of Cu2+ based on thiourea-salicylaldehyde coordination in aqueous media. Chemistry 2011, 17, 1410. [Google Scholar] [CrossRef]
- Vellingiri, K.; Boukhvalov, D.W.; Pandey, S.K.; Deep, A.; Kim, K.H. Luminescent metal-organic frameworks for the detection of nitrobenzene in aqueous media. Sens. Actuators B Chem. 2017, 245, 305–313. [Google Scholar] [CrossRef]
- Li, X.Y.; Zeng, H.; Hu, H.M.; Sun, L.J.; Zhang, J.L.; Wang, X.F. Multiterpyridyl Ligand/Cadmium(II) Coordination Polymer Nanosheets for Recoverable Luminescent Sensors. ACS Appl. Nano Mater. 2022, 5, 7113. [Google Scholar] [CrossRef]
- Ruiz-Ramirez, M.M.; Silva-Carrillo, C.; Hinostroza-Mojarro, J.J.; Rivera-Lugo, Y.Y.; Valle-Trujillo, P.; Trujillo-Navarrete, B. Electrochemical sensor for determination of nitrobenzene in aqueous solution based on nanostructures of TiO2/GO. Fuel 2021, 283, 119326. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.; Wang, S.; Yang, J.; Hu, S. A calixarene-based coordination cage as an efficient luminescent sensor for Fe3+, MnO4−, NB and 2, 4-DNP in aqueous medium. CrystEngComm 2023, 25, 1495. [Google Scholar] [CrossRef]
- Karmakar, A.; Samanta, P.; Dutta, S.; Ghosh, S.K. Fluorescent “turn-on” sensing based on metal–organic frameworks (MOFs). Chem.-Asian J. 2019, 14, 4506–4519. [Google Scholar] [CrossRef]
- Wu, J.X.; Yan, B. Photofunctional hybrid based lanthanide functionalized metal-organic frameworks by ion exchange and coordination modification for luminescent sensing. Inorg. Chem. Commun. 2016, 70, 189. [Google Scholar] [CrossRef]
- Li, Q.; Qian, J.; Zhou, J.; Du, L.; Zhao, Q. Highly chemically and thermally stable lanthanide coordination polymers for luminescent probes and white light emitting diodes. CrystEngComm 2020, 22, 2667. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Liu, D.; Liu, M.; Qian, J. Two-dimensional Cd(II) coordination polymer encapsulated by Tb3+ as a reversible luminescent probe for Fe3+. RSC Adv. 2019, 9, 34949. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fan, P.; Tu, X.; Min, H.; Yu, X.; Li, X.; Cheng, P. A bifunctional luminescent metal–organic framework for the sensing of paraquat and Fe3+ ions in water. Chem.-Asian J. 2019, 14, 3611. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, Y.; Ma, Y.; Huang, L.; Zhao, Y.; Wang, L. Luminescent lanthanide complex sensor for Acac and Cd2+. Photochem. Photobiol. 2021, 97, 664. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.H.; Huang, P.P.; Zhang, Z.J.; Tian, F.W.; Ge, J.; Cao, X.Y.; Liu, J.; Wang, D.; Zheng, N.; Lu, J.F.; et al. A new 3D Cd-MOF with 2fold interpenetrated as “turn-on/turn-off” fluorescent sensor for selective and sensitive detection of Cu2+, Al3+ and Fe3+ ions. J. Mol. Struct. 2024, 1299, 137162. [Google Scholar] [CrossRef]
- Wang, L.; Tu, B.; Xu, W.; Fu, Y.; Zheng, Y. Uranyl Organic Framework as a Highly Selective and Sensitive Turn-on and Turn-off Luminescent Sensor for Dual Functional Detection Arginine and MnO. Inorg. Chem. 2020, 59, 5004. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Q.W.; Wei, M.M.; Chen, J.Y.; Wang, H.H.; Li, X. Lanthanide ternary mixed-ligand coordination polymers as fluorescent sensors for the sensitive and selective detection of chlorogenic acid. CrystEngComm 2022, 24, 6367. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yan, B. Eu(III)-Functionalized MIL-124 as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules Especially for Fe(III) and Fe(II). ACS Appl. Mater. Interfaces 2015, 7, 721. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Z.; Zhang, R.; Li, Y.Z.; Guo, Z.; Zheng, H.G. Solvatochromic Behavior of a Nanotubular Metal-Organic Framework for Sensing Small Molecules. J. Am. Chem. Soc. 2011, 133, 4172. [Google Scholar] [CrossRef] [PubMed]
- Mautner, F.A.; Bierbaumer, F.; Fischer, R.C.; Vicente, R.; Tubau, À.; Ferran, A.; Massoud, S.S. Structural Characterization, Magnetic and Luminescent Properties of Praseodymium(III)-4,4,4-Trifluoro-1-(2-Naphthyl)Butane-1,3-Dionato(1-) Complexes. Crystals 2021, 11, 179. [Google Scholar] [CrossRef]
- Mautner, F.A.; Bierbaumer, F.; Vicente, R.; Speed, S.; Tubau, Á.; Font-Bardía, M.; Fischer, R.C.; Massoud, S.S. Magnetic and luminescence properties of 8-coordinate holmium (iii) complexes containing 4, 4, 4-trifluoro-1-phenyl-and 1-(naphthalen-2-yl)-1, 3-butanedionates. Molecules 2022, 27, 1129. [Google Scholar] [CrossRef] [PubMed]
- Han, L.J.; Kong, Y.J.; Zhang, X.M.; Hou, G.Z.; Chen, H.C.; Zheng, H.G. Fabrication of a robust lanthanide metal–organic framework as a multifunctional material for Fe (III) detection, CO2 capture, and utilization. J. Mater. Chem. C 2021, 9, 6051. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, M.Y.; Zhang, X.N.; Li, G.M.; Zhang, X.D.; Han, Z.B. Two series of solvent-dependent lanthanide coordination polymers demonstrating tunable luminescence and catalysis properties. Cryst. Growth Des. 2014, 14, 3002–3009. [Google Scholar] [CrossRef]
- Tarlton, M.L.; Skanthakumar, S.; Hutchison, D.; Gremillion, A.J.; Oliver, A.G.; Wilson, R.E. Synthesis of an isostructural series of 12-coordinate lanthanide nitrate hybrid double perovskites with cubic symmetry. Inorg. Chem. 2022, 61, 17101–17108. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.T.; Zhou, Y.F.; Huang, D.C.; Wei, X.; Su, M.Y.; Wang, K.; Han, S.; Hong, M.C. Crystal structure, multiplex photoluminescence, and magnetic properties of a series of lanthanide coordination polymers based on quinoline carboxylate ligand. Cryst. Growth Des. 2013, 13, 5420–5432. [Google Scholar] [CrossRef]
- Jing, T.; Chen, L.; Jiang, F.; Yang, Y.; Zhou, K.; Yu, M.; Cao, Z.; Li, S.; Hong, M. Fabrication of a Robust Lanthanide Metal–Organic Framework as a Multifunctional Material for Fe(III) Detection, CO2 Capture, and Utilization. Cryst. Growth Des. 2018, 18, 2956. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, F.; Xu, C.; Feng, Y.; Zhang, G.; Liu, W.A. A multifunctional Eu-CP as a recyclable luminescent probe for the highly sensitive detection of Fe3+/Fe2+, Cr2O72−, and nitroaromatic explosives. Dalton Trans. 2018, 47, 7480. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Singh-Wilmot, M.A.; Carter, K.P.; Cahill, C.L.; Ridenour, J.A. Lanthanide-2, 3, 5, 6-tetrabromoterephthalic acid metal–organic frameworks: Evolution of halogen···halogen interactions across the lanthanide series and their potential as selective bifunctional sensors for the detection of Fe3+, Cu2+, and nitroaromatics. Cryst. Growth Des. 2018, 19, 305. [Google Scholar] [CrossRef]
- Zhong, X.F.; Ma, Z.C.; Lin, J.J.; Wu, Y.; Liang, G.; Zhang, Y.Y.; Chen, D.J.; Xie, K.P.; Mo, Z.W.; Chen, X.M. Metal–Organic Frameworks with Triazine and Amine Functional Groups for Iodine Removal and Sensitive Detection of Cu2+ and Fe3+ Ions. Cryst. Growth Des. 2023, 23, 8793. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; VanDuyne, R.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105. [Google Scholar] [CrossRef]
- Liu, B. Metal–organic framework-based devices: Separation and sensors. J. Mater. Chem. 2012, 22, 10094. [Google Scholar] [CrossRef]
- Banerjee, D.; Hu, Z.; Li, J. Luminescent metal–organic frameworks as explosive sensors. Dalton Trans. 2014, 43, 10668. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Chem. Rev. 2014, 273, 76. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Desai, A.V.; Ghosh, S.K. Engineering metal–organic frameworks for aqueous phase 2, 4, 6-trinitrophenol (TNP) sensing. CrystEngComm 2016, 18, 2994. [Google Scholar] [CrossRef]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Chem. Int. Ed. 2013, 52, 2881. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Desai, A.V.; Ghosh, S.K. A fluorescent metal–organic framework for highly selective detection of nitro explosives in the aqueous phase. Chem. Commun. 2014, 50, 8915. [Google Scholar] [CrossRef]
- Joarder, B.; Desai, A.V.; Samanta, P.; Mukherjee, S.; Ghosh, S.K. Selective and sensitive aqueous-phase detection of 2, 4, 6-trinitrophenol (TNP) by an amine-functionalized metal–organic framework. Chem. Eur. J. 2015, 21, 965. [Google Scholar] [CrossRef]
- Mukherjee, S.; Desai, A.V.; Inamdar, A.I.; Manna, B.; Ghosh, S.K. Selective detection of 2, 4, 6-trinitrophenol (TNP) by a π-stacked organic crystalline solid in water. Cryst. Growth Design 2015, 15, 3493. [Google Scholar] [CrossRef]
- Mukherjee, S.; Desai, A.V.; Manna, B.; Inamdar, A.I.; Ghosh, S.K. Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water. Cryst. Growth Des. 2015, 15, 4627. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Desai, A.V.; Samanta, P.; Ghosh, S.K. Aqueous phase selective detection of 2, 4, 6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Trans. 2015, 44, 15175. [Google Scholar] [CrossRef]
- Karmakar, A.; Kumar, A.; Chaudhari, A.K.; Samanta, P.; Desai, A.V.; Krishna, R.; Ghosh, S.K. Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration of an Electron-Rich and-Deficient Pore Surface. Chem.-Eur. J. 2016, 22, 4931. [Google Scholar] [CrossRef]
- Surya, S.G.; Nagarkar, S.S.; Ghosh, S.K.; Sonar, P.; Rao, V.R. OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material. Sens. Actuators. B. 2016, 223, 114. [Google Scholar] [CrossRef]
- Liu, X.G.; Wang, H.; Chen, B.; Zou, Y.; Gu, Z.G.; Zhao, Z.; Shen, L. A luminescent metal–organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677. [Google Scholar] [CrossRef]
- Wang, G.Y.; Song, C.; Kong, D.M.; Ruan, W.J.; Chang, Z.; Li, Y. Two luminescent metal–organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J. Mater. Chem. A 2014, 2, 2213. [Google Scholar] [CrossRef]
- Tian, H.R.; Gao, C.Y.; Yang, Y.; Ai, J.; Liu, C.; Xua, Z.G.; Sun, Z.M. A microporous Cd-MOF based on a hexavalent silicon-centred connector and luminescence sensing of small molecules. New J. Chem. 2017, 41, 1137. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Z.G.; Dang, S.; Sun, Z.M. Self-Assembly of Tunable Heterometallic Ln–Ru Coordination Polymers with Near-Infrared Luminescence and Magnetocaloric Effect. Chem.-Eur. J. 2017, 23, 2852. [Google Scholar] [CrossRef] [PubMed]
- Buragohain, A.; Yousufuddin, M.; Sarma, M.; Biswas, S. 3D luminescent amide-functionalized cadmium tetrazolate framework for selective detection of 2, 4, 6-trinitrophenol. Cryst. Growth Des. 2016, 16, 842. [Google Scholar] [CrossRef]
- Huang, R.W.; Wei, Y.S.; Dong, X.Y.; Wu, X.H.; Du, C.X.; Zang, S.Q.; Mak, T.C.W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 2017, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cao, L.; Li, X.; Qin, C.; Zhao, L.; Shao, K.Z.; Su, Z.M. Metal–organic frameworks constructed from tib and carboxylate acid ligands: Selective sensing of nitro explosives and magnetic properties. Dalton Trans. 2017, 46, 7567. [Google Scholar] [CrossRef] [PubMed]
- Gole, B.; Bar, A.K.; Mukherjee, P.S. Modification of extended open frameworks with fluorescent tags for sensing explosives: Competition between size selectivity and electron deficiency. Chem.-Eur. J. 2014, 20, 2276–2291. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.H.; Wang, J.X.; Huang, P.P.; Liu, J.; Zheng, N.; Shi, J.; Xu, H.T.; Yue, S.Y.; Lu, J.F. A new pyrazine carboxyl derivative and its two d10 metal coordination polymers: Syntheses, characterization, DFT and property. J. Mol. Struct. 2023, 1290, 135935. [Google Scholar] [CrossRef]
- Elantabli, F.M.; Mohamed, R.G.; El-Medani, S.M.; Haukka, M.; Ramadan, R.M.; Afifi, M.A. Structural investigations of new tridentate-phenylacetohydrazide Schiff base metal chelates: X-ray diffraction, Hirshfeld surface analyses, DFT, antibacterial and molecular docking studies. J. Mol Struct. 2024, 1299, 137230. [Google Scholar] [CrossRef]
- Najafi, Z.; Marandi, F.; Bahrami, A.; Fuhrmann, D.; Janghouri, M. Four new Zn (II) complexes based on 2-thienoyltrifluoroacetone and N-donor auxiliary bridging and chelating ligands: Synthesis, spectroscopic and structural studies, thermal behavior and Hirshfeld surface analysis. Polyhedron 2023, 242, 116486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Song, J.; Zhou, Y.-L.; Chen, H.-H.; Duan, B.-F.; Jin, L.-X.; Ren, C.-Q.; Lu, J.-F. A Series of Lanthanide Coordination Polymers as Luminescent Sensors for Selective Detection of Inorganic Ions and Nitrobenzene. Molecules 2024, 29, 3438. https://doi.org/10.3390/molecules29143438
Wu M, Song J, Zhou Y-L, Chen H-H, Duan B-F, Jin L-X, Ren C-Q, Lu J-F. A Series of Lanthanide Coordination Polymers as Luminescent Sensors for Selective Detection of Inorganic Ions and Nitrobenzene. Molecules. 2024; 29(14):3438. https://doi.org/10.3390/molecules29143438
Chicago/Turabian StyleWu, Miao, Juan Song, Yun-Long Zhou, Hui-Hui Chen, Bo-Feng Duan, Ling-Xia Jin, Chuan-Qing Ren, and Jiu-Fu Lu. 2024. "A Series of Lanthanide Coordination Polymers as Luminescent Sensors for Selective Detection of Inorganic Ions and Nitrobenzene" Molecules 29, no. 14: 3438. https://doi.org/10.3390/molecules29143438
APA StyleWu, M., Song, J., Zhou, Y. -L., Chen, H. -H., Duan, B. -F., Jin, L. -X., Ren, C. -Q., & Lu, J. -F. (2024). A Series of Lanthanide Coordination Polymers as Luminescent Sensors for Selective Detection of Inorganic Ions and Nitrobenzene. Molecules, 29(14), 3438. https://doi.org/10.3390/molecules29143438