Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”
Abstract
:1. Introduction and Scope
2. What Are Deep Eutectic Solvents?
3. Practical Aspects in Electrodeposition Investigations
3.1. Viscosity
3.2. Thermal Stability and Volatility
3.3. Apparent pH
3.4. Electrochemical Window
3.5. Reference Electrodes and Reference Redox Couples
3.6. Water Content
4. Selected Case Studies
4.1. The “Obvious” Copper Electrochemistry
4.2. The “Unexpected” Tellurium Electrochemistry
5. Conclusions and Perspectives on the “Wonders” of DESs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Abranches, D.O.; Coutinho, J.A.P. Everything You Wanted to Know about Deep Eutectic Solvents but Were Afraid to Be Told. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Deep Eutectic Solvents; Springer: Cham, Switzerland, 2019. [Google Scholar]
- OpenAI. ChatGPT. Version 3.5. 2021. Available online: https://openai.com/ (accessed on 24 August 2023).
- Abranches, D.O.; Coutinho, J.A. Type V deep eutectic solvents: Design and applications. Curr. Opin. Green Sustain. Chem. 2022, 35, 100612. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2018, 48, 962–982. [Google Scholar] [CrossRef]
- Silva, L.P.; Martins, M.A.; Conceicao, J.H.; Pinho, S.P.; Coutinho, J.A. Eutectic mixtures based on polyalcohols as sustainable solvents: Screening and characterization. ACS Sustain. Chem. Eng. 2020, 8, 15317–15326. [Google Scholar] [CrossRef]
- Zhen, F.; Percevault, L.; Paquin, L.; Limanton, E.; Lagrost, C.; Hapiot, P. Electron Transfer Kinetics in a Deep Eutectic Solvent. J. Phys. Chem. B 2020, 124, 1025–1032. [Google Scholar] [CrossRef]
- Shen, D.; Steinberg, K.; Akolkar, R. Avoiding Pitfalls in the Determination of Reliable Electrochemical Kinetics Parameters for the Cu2+ → Cu1+ Reduction Reaction in Deep Eutectic Solvents. J. Electrochem. Soc. 2018, 165, E808–E815. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Rodriguez Rodriguez, N.; van den Bruinhorst, A.; Kollau, L.J.; Kroon, M.C.; Binnemans, K. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability. J. Sustain. Metall. 2023, 9, 423–438. [Google Scholar] [CrossRef]
- Afonso, J.; Mezzetta, A.; Marrucho, I.M.; Guazzelli, L. History repeats itself again: Will the mistakes of the past for ILs be repeated for DESs? From being considered ionic liquids to becoming their alternative: The unbalanced turn of deep eutectic solvents. Green Chem. 2023, 25, 59–105. [Google Scholar] [CrossRef]
- Bougouma, M.; Van Elewyck, A.; Steichen, M.; Buess-Herman, C.; Doneux, T. Selenium electrochemistry in choline chloride–urea deep eutectic electrolyte. J. Solid State Electrochem. 2013, 17, 527–536. [Google Scholar] [CrossRef]
- Soro, L.; Soma, F.; Bougouma, M.; Buess-Herman, C.; Parpal Giménez, M.; Ustarroz, J.; Doneux, T. Electrodeposition of tin, selenium, and tin-selenium compound in the choline chloride-glycerol deep eutectic solvent. J. Solid State Electrochem. 2024, 28, 1509–1519. [Google Scholar] [CrossRef]
- Izutsu, K. Electrochemistry in Nonaqueous Solutions; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Abbott, A.P.; Alabdullah, S.S.M.; Al-Murshedi, A.Y.M.; Ryder, K.S. Bronsted acidity in deep eutectic solvents and ionic liquids. Faraday Discuss. 2018, 206, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Haerens, K.; Matthijs, E.; Binnemans, K.; Van der Bruggen, B. Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem. 2009, 11, 1357–1365. [Google Scholar] [CrossRef]
- Villemejeanne, B.; Legeai, S.; Meux, E.; Dourdain, S.; Mendil-Jakani, H.; Billy, E. ElectroLeaching-ElectroChemical Deposition (EL-ECD) of gold and palladium in a deep eutectic solvent (DES). J. Environ. Chem. Eng. 2022, 10, 108004. [Google Scholar] [CrossRef]
- Soma, F.; Nguyen, V.T.; Bougouma, M.; Buess-Herman, C.; Doneux, T. Gold electrochemistry in the acidic choline chloride-oxalic acid deep eutectic solvent. Electrochim. Acta 2024, 2024, 144660. [Google Scholar] [CrossRef]
- Shen, X.; Sinclair, N.; Wainright, J.; Akolkar, R.; Savinell, R.F. Evaluating and Developing a Reliable Reference Electrode for Choline Chloride Based Deep Eutectic Solvents. J. Electrochem. Soc. 2020, 167, 086509. [Google Scholar] [CrossRef]
- Gritzner, G.; Kuta, J. Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983). Pure Appl. Chem. 1984, 56, 461–466. [Google Scholar] [CrossRef]
- Abbott, A.; Frisch, G.; Gurman, S.; Hillman, A.; Hartley, J.; Holyoak, F.; Ryder, K. Ionometallurgy: Designer redox properties for metal processing. Chem. Commun. 2011, 47, 10031–10033. [Google Scholar] [CrossRef]
- Noftle, R.E.; Pletcher, D. An interpretation of the formal potential for the ferricyanide/ferrocyanide couple as a function of solvent composition. J. Electroanal. Chem. Interfacial Electrochem. 1990, 293, 273–277. [Google Scholar] [CrossRef]
- Rayée, Q.; Doneux, T.; Buess-Herman, C. Underpotential deposition of silver on gold from deep eutectic electrolytes. Electrochim. Acta 2017, 237, 127–132. [Google Scholar] [CrossRef]
- Rayee, Q. Dépôts Électrochimiques D’argent, de Palladium et D’alliages Argent-Palladium en Solvants Eutectiques Profonds. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2020. [Google Scholar]
- Lukaczynska, M.; Ceglia, A.; Van Den Bergh, K.; De Strycker, J.; Terryn, H.; Ustarroz, J. Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochim. Acta 2019, 319, 690–704. [Google Scholar] [CrossRef]
- Cherigui, E.A.M.; Sentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents. J. Phys. Chem. C 2018, 122, 23129–23142. [Google Scholar] [CrossRef]
- Sebastián, P.; Vallés, E.; Gómez, E. Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu (I) stabilization in chloride media. Electrochim. Acta 2014, 123, 285–295. [Google Scholar] [CrossRef]
- Sorgho, A.; Mernissi Cherigui, E.A.; Bougouma, M.; Aldibaja, F.K.; Nisol, B.; Reniers, F.; Buess-Herman, C.; Doneux, T. Electrochemical formation and stability of copper selenide thin films in the choline chloride-urea deep eutectic solvent at gold electrode. Electrochim. Acta 2022, 424, 140676. [Google Scholar] [CrossRef]
- Bernasconi, R.; Zebarjadi, M.; Magagnin, L. Copper electrodeposition from a chloride free deep eutectic solvent. J. Electroanal. Chem. 2015, 758, 163–169. [Google Scholar] [CrossRef]
- Su, Y.; Liu, J.; Wang, R.; Aisa, S.; Cao, X.; Li, S.; Wang, B.; Zhou, Q. Comproportionation reaction of Cu (II)/Cu (0) in ethaline-water mixed solvents. J. Electrochem. Soc. 2018, 165, H78. [Google Scholar] [CrossRef]
- Valverde, P.E.; Green, T.A.; Roy, S. Effect of water on the electrodeposition of copper from a deep eutectic solvent. J. Appl. Electrochem. 2020, 50, 699–712. [Google Scholar] [CrossRef]
- Vukmirovic, M.B.; Adzic, R.R.; Akolkar, R. Copper electrodeposition from deep eutectic solvents—Voltammetric studies providing insights into the role of substrate: Platinum vs glassy carbon. J. Phys. Chem. B 2020, 124, 5465–5475. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Zeller, S.J.; Kibler, L.A.; Ceblin, M.U.; Jacob, T. Electrodeposition of Cu onto Au (111) from deep eutectic solvents: Molar ratio of salt and hydrogen bond donor. ChemElectroChem 2022, 9, e202101283. [Google Scholar] [CrossRef]
- Hartley, J.M.; Ip, C.M.; Forrest, G.C.; Singh, K.; Gurman, S.J.; Ryder, K.S.; Abbott, A.P.; Frisch, G. EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents. Inorg. Chem. 2014, 53, 6280–6288. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Bard, A.J. Measurement of temperature-dependent stability constants of Cu(I) and Cu(II) chloride complexes by voltammetry at a Pt ultramicroelectrode. Anal. Chem. 2015, 87, 3498–3504. [Google Scholar] [CrossRef] [PubMed]
- Ceblin, M.U.; Zeller, S.; Schick, B.; Kibler, L.A.; Jacob, T. Electrodeposition of Ag onto Au (111) from deep eutectic solvents. ChemElectroChem 2019, 6, 141–146. [Google Scholar] [CrossRef]
- Sorgho, A.; Bougouma, M.; De Leener, G.; Vander Steen, J.; Doneux, T. Impact of speciation on the tellurium electrochemistry in choline chloride-based deep eutectic solvents. Electrochem. Commun. 2022, 140, 107327. [Google Scholar] [CrossRef]
- Milne, J. Hexachlorotellurate (IV) hydrolysis equilibria in hydrochloric acid. measurement by Raman and 125Te NMR spectroscopy and a reconsideration of earlier spectrophotometric results. Can. J. Chem. 1991, 69, 987–992. [Google Scholar] [CrossRef]
- Milne, J.; Mahadevan, M. Chlorotellurate (IV) equilibria in aqueous hydrochloric acid. Inorg. Chem. 1984, 23, 268–271. [Google Scholar] [CrossRef]
- Perry, S.C.; White, J.; Nandhakumar, I. Template-free electrochemical deposition of tellurium nanowires with eutectic solvents. Electrochim. Acta 2023, 439, 141674. [Google Scholar] [CrossRef]
- dos Santos, L.P.; Freire, R.M.; Michea, S.; Denardin, J.C.; Araujo, D.B.; Barros, E.B.; Correia, A.N.; De Lima-Neto, P. Electrodeposition of 1-D tellurium nanostructure on gold surface from choline chloride-urea and choline chloride-ethylene glycol mixtures. J. Mol. Liq. 2019, 288, 111038. [Google Scholar] [CrossRef]
- dos Santos, L.P.M. Electrodeposition of Tellurium and Cadmium Telluride on Gold from Deep Eutectic Solvents Based on Choline Chloride. Ph.D. Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2019. [Google Scholar]
- Hussey, C.L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry. Pure Appl. Chem. 1988, 60, 1763–1772. [Google Scholar] [CrossRef]
- Zante, G.; Elgar, C.E.; George, K.; Abbott, A.P.; Hartley, J.M. Concentrated Ionic Fluids: Is There a Difference Between Chloride-Based Brines and Deep Eutectic Solvents? Angew. Chem. 2023, 135, e202311140. [Google Scholar] [CrossRef]
- Bougouma, M.; Doneux, T.; Legma, J.B.; Buess-Herman, C. Etude électrochimique du système Zn-Se en milieu eutectique chlorure de choline-urée. J. Soc. Ouest-Afr. Chim. 2014, 38, 1–14. [Google Scholar]
Class | Composition b |
---|---|
Type I | Cat+X−zMClx |
Type II | Cat+X−zMClx·yH2O |
Type III | Cat+X−zRZ |
Type IV |
Deep Eutectic Solvent | Apparent pH a |
---|---|
ChCl-Ox | −1.1 |
ChCl-EG | 6.0 b; 8.4 c; 9.8 d |
ChCl-Gly | 4.5 b; 8.2 c; 8.7 d |
ChCl-U | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doneux, T.; Sorgho, A.; Soma, F.; Rayée, Q.; Bougouma, M. Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”. Molecules 2024, 29, 3439. https://doi.org/10.3390/molecules29143439
Doneux T, Sorgho A, Soma F, Rayée Q, Bougouma M. Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”. Molecules. 2024; 29(14):3439. https://doi.org/10.3390/molecules29143439
Chicago/Turabian StyleDoneux, Thomas, Alassane Sorgho, Fousséni Soma, Quentin Rayée, and Moussa Bougouma. 2024. "Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”" Molecules 29, no. 14: 3439. https://doi.org/10.3390/molecules29143439
APA StyleDoneux, T., Sorgho, A., Soma, F., Rayée, Q., & Bougouma, M. (2024). Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”. Molecules, 29(14), 3439. https://doi.org/10.3390/molecules29143439