Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis Method
3.3. Physical–Chemical Characterization of the DESs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.B.; Kumar, V.S.; Chaudhary, M.; Singh, P. A Mini Review on Synthesis, Properties and Applications of Deep Eutectic Solvents. J. Indian Chem. Soc. 2021, 98, 100210. [Google Scholar] [CrossRef]
- Balaji, R.; Ilangeswaran, D. Synthesis of Some Metal Nanoparticles Using the Effective Media of Choline Chloride Based Deep Eutectic Solvents. Mater. Today Proc. 2022, 56, 3366–3375. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Hucke, H.U.; Ramos, N.F.; Ribeiro, H.F.; Alves, M.B.; Mustafa, A.; Pereira, J.F.B.; Farias, F.O. Tailor-Made Solvents for Microbial Carotenoids Recovery. Appl. Microbiol. Biotechnol. 2024, 108, 234. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A. Perspectives for the Use of Deep Eutectic Solvents in the Preparation of Electrochemical Sensors and Biosensors. Curr. Opin. Electrochem. 2024, 45, 101465. [Google Scholar] [CrossRef]
- Naeem, A.; Saeed, B.; AlMohamadi, H.; Lee, M.; Gilani, M.A.; Nawaz, R.; Khan, A.L.; Yasin, M. Sustainable and Green Membranes for Chemical Separations: A Review. Sep. Purif. Technol. 2024, 336, 126271. [Google Scholar] [CrossRef]
- Martín, M.I.; García-Díaz, I.; López, F.A. Properties and Perspective of Using Deep Eutectic Solvents for Hydrometallurgy Metal Recovery. Miner. Eng. 2023, 203, 108306. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun. 2001, 19, 2010–2011. [Google Scholar] [CrossRef]
- Shaibuna, M.; Theresa, L.V.; Sreekumar, K. Neoteric Deep Eutectic Solvents: History, Recent Developments, and Catalytic Applications. Soft Matter 2022, 18, 2695–2721. [Google Scholar] [CrossRef] [PubMed]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Rodriguez Rodriguez, N.; van den Bruinhorst, A.; Kollau, L.J.B.M.; Kroon, M.C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Mingorance-Sánchez, C. Deep Eutectic Solvents and Multicomponent Reactions: Two Convergent Items to Green Chemistry Strategies. ChemistryOpen 2021, 10, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.Q.; Abbasi, N.M.; Anderson, J.L. Deep Eutectic Solvents in Separations: Methods of Preparation, Polarity, and Applications in Extractions and Capillary Electrochromatography. J. Chromatogr. A 2020, 1633, 461613. [Google Scholar] [CrossRef]
- Crawford, D.E.; Wright, L.A.; James, S.L.; Abbott, A.P. Efficient Continuous Synthesis of High Purity Deep Eutectic Solvents by Twin Screw Extrusion. Chem. Commun. 2016, 52, 4215–4218. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Ferrer, M.L.; Yuste, L.; Rojo, F.; del Monte, F. Bacteria Incorporation in Deep-Eutectic Solvents through Freeze-Drying. Angew. Chem. Int. Ed. 2010, 49, 2158–2162. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Espino, M.; Fernández, M.A.; Silva, M.F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. [Google Scholar] [CrossRef]
- Pelosi, C.; Gonzalez-Rivera, J.; Bernazzani, L.; Tiné, M.R.; Duce, C. Optimized Preparation, Thermal Characterization and Microwave Absorption Properties of Deep Eutectic Solvents Made by Choline Chloride and Hydrated Salts of Alkali Earth Metals. J. Mol. Liq. 2023, 371, 121104. [Google Scholar] [CrossRef]
- Gonzalez Rivera, J.; Pulidori, E.; Pelosi, C.; Ferrari, C.; Bernazzani, L.; Tinè, M.R.; Bramanti, E.; Duce, C. 20 Years of Microwave Technology Developments Using a Coaxial Antenna: From Human Health to Green Chemistry Applications. Curr. Res. Green Sustain. Chem. 2022, 5, 100337. [Google Scholar] [CrossRef]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Długosz, O.; Banach, M. Green Methods for Obtaining Deep Eutectic Solvents (DES). J. Clean. Prod. 2024, 434, 139914. [Google Scholar] [CrossRef]
- Kitchen, H.J.; Vallance, S.R.; Kennedy, J.L.; Tapia-Ruiz, N.; Carassiti, L.; Harrison, A.; Whittaker, A.G.; Drysdale, T.D.; Kingman, S.W.; Gregory, D.H. Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chem. Rev. 2014, 114, 1170–1206. [Google Scholar] [CrossRef]
- Banakar, V.V.; Sabnis, S.S.; Gogate, P.R.; Raha, A. Saurabh Ultrasound Assisted Continuous Processing in Microreactors with Focus on Crystallization and Chemical Synthesis: A Critical Review. Chem. Eng. Res. Des. 2022, 182, 273–289. [Google Scholar] [CrossRef]
- Saha, S.K.; Dey, S.; Chakraborty, R. Effect of Choline Chloride-Oxalic Acid Based Deep Eutectic Solvent on the Ultrasonic Assisted Extraction of Polyphenols from Aegle Marmelos. J. Mol. Liq. 2019, 287, 110956. [Google Scholar] [CrossRef]
- Yue, D.; Jia, Y.; Yao, Y.; Sun, J.; Jing, Y. Structure and Electrochemical Behavior of Ionic Liquid Analogue Based on Choline Chloride and Urea. Electrochim. Acta 2012, 65, 30–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Liao, C. Insights into the Properties of Deep Eutectic Solvent Based on Reline for Ga-Controllable CIGS Solar Cell in One-Step Electrodeposition. J. Electrochem. Soc. 2016, 163, D689–D693. [Google Scholar] [CrossRef]
- Cotroneo-Figueroa, V.P.; Gajardo-Parra, N.F.; López-Porfiri, P.; Leiva, Á.; Gonzalez-Miquel, M.; Garrido, J.M.; Canales, R.I. Hydrogen Bond Donor and Alcohol Chain Length Effect on the Physicochemical Properties of Choline Chloride Based Deep Eutectic Solvents Mixed with Alcohols. J. Mol. Liq. 2022, 345, 116986. [Google Scholar] [CrossRef]
- Gajardo-Parra, N.F.; Lubben, M.J.; Winnert, J.M.; Leiva, Á.; Brennecke, J.F.; Canales, R.I. Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents and Excess Properties of Their Pseudo-Binary Mixtures with 1-Butanol. J. Chem. Thermodyn. 2019, 133, 272–284. [Google Scholar] [CrossRef]
- Zullaikah, S.; Rachmaniah, O.; Utomo, A.T.; Niawanti, H.; Ju, Y.H. Green Separation of Bioactive Natural Products Using Liquiefied Mixture of Solids. Green Chem. 2018, 1, 17–38. [Google Scholar]
- Milevskii, N.A.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent. Hydrometallurgy 2022, 207, 105777. [Google Scholar] [CrossRef]
- Vieira, L.; Schennach, R.; Gollas, B. In Situ PM-IRRAS of a Glassy Carbon Electrode/Deep Eutectic Solvent Interface. Phys. Chem. Chem. Phys. 2015, 17, 12870–12880. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Mendive, C.B.; Bredow, T.; Blesa, M.A.; Bahnemann, D.W. ATR-FTIR Measurements and Quantum Chemical Calculations Concerning the Adsorption and Photoreaction of Oxalic Acid on TiO2. Phys. Chem. Chem. Phys. 2006, 8, 3232. [Google Scholar] [CrossRef]
- Perkins, S.L.; Painter, P.; Colina, C.M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652–3662. [Google Scholar] [CrossRef]
- Al-Bayati, F.A. Isolation and Identification of Antimicrobial Compound from Mentha Longifolia L. Leaves Grown Wild in Iraq. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 20. [Google Scholar] [CrossRef]
- Mishra, R.K.; Rout, P.C.; Sarangi, K.; Nathsarma, K.C. Solvent Extraction of Fe(III) from the Chloride Leach Liquor of Low Grade Iron Ore Tailings Using Aliquat 336. Hydrometallurgy 2011, 108, 93–99. [Google Scholar] [CrossRef]
- Lee, L.Y.; Morad, N.; Ismail, N.; Talebi, A.; Rafatullah, M. Optimization for Liquid-Liquid Extraction of Cd(II) over Cu(II) Ions from Aqueous Solutions Using Ionic Liquid Aliquat 336 with Tributyl Phosphate. Int. J. Mol. Sci. 2020, 21, 6860. [Google Scholar] [CrossRef] [PubMed]
- Griffin, P.J.; Cosby, T.; Holt, A.P.; Benson, R.S.; Sangoro, J.R. Charge Transport and Structural Dynamics in Carboxylic-Acid-Based Deep Eutectic Mixtures. J. Phys. Chem. B 2014, 118, 9378–9385. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Gray, S. Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem 2006, 7, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S. Application of Hole Theory to Define Ionic Liquids by Their Transport Properties. J. Phys. Chem. B 2007, 111, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Ijardar, S.P.; Singh, V.; Gardas, R.L. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022, 27, 1368. [Google Scholar] [CrossRef] [PubMed]
- Mero, A.; Koutsoumpos, S.; Giannios, P.; Stavrakas, I.; Moutzouris, K.; Mezzetta, A.; Guazzelli, L. Comparison of Physicochemical and Thermal Properties of Choline Chloride and Betaine-Based Deep Eutectic Solvents: The Influence of Hydrogen Bond Acceptor and Hydrogen Bond Donor Nature and Their Molar Ratios. J. Mol. Liq. 2023, 377, 121563. [Google Scholar] [CrossRef]
- Ma, C.; Laaksonen, A.; Liu, C.; Lu, X.; Ji, X. The Peculiar Effect of Water on Ionic Liquids and Deep Eutectic Solvents. Chem. Soc. Rev. 2018, 47, 8685–8720. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef]
- Zhong, M.; Tang, Q.F.; Zhu, Y.W.; Chen, X.Y.; Zhang, Z.J. An Alternative Electrolyte of Deep Eutectic Solvent by Choline Chloride and Ethylene Glycol for Wide Temperature Range Supercapacitors. J. Power Sources 2020, 452, 227847. [Google Scholar] [CrossRef]
- Jani, A.; Sohier, T.; Morineau, D. Phase Behavior of Aqueous Solutions of Ethaline Deep Eutectic Solvent. J. Mol. Liq. 2020, 304, 112701. [Google Scholar] [CrossRef]
- Elhamarnah, Y.A.; Nasser, M.; Qiblawey, H.; Benamor, A.; Atilhan, M.; Aparicio, S. A Comprehensive Review on the Rheological Behavior of Imidazolium Based Ionic Liquids and Natural Deep Eutectic Solvents. J. Mol. Liq. 2019, 277, 932–958. [Google Scholar] [CrossRef]
- Zhang, Y.; Poe, D.; Heroux, L.; Squire, H.; Doherty, B.W.; Long, Z.; Dadmun, M.; Gurkan, B.; Tuckerman, M.E.; Maginn, E.J. Liquid Structure and Transport Properties of the Deep Eutectic Solvent Ethaline. J. Phys. Chem. B 2020, 124, 5251–5264. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, T.H.; Sabri, M.A.; Abdel Jabbar, N.; Nancarrow, P.; Mjalli, F.S.; AlNashef, I. Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures with Water: Measurement and Estimation. Molecules 2020, 25, 3816. [Google Scholar] [CrossRef] [PubMed]
- van Osch, D.J.G.P.; Dietz, C.H.J.T.; van Spronsen, J.; Kroon, M.C.; Gallucci, F.; van Sint Annaland, M.; Tuinier, R. A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustain. Chem. Eng. 2019, 7, 2933–2942. [Google Scholar] [CrossRef]
DES | Heating–Stirring | Ultrasound | ||
---|---|---|---|---|
Time (h) | Temperature (°C) | Time (h) | Final Temperature * (°C) | |
ChCl:U (1:2) | 5 | 80 | 4 | 50 |
ChCl:EG (1:2) | 24 | 80 | 1 | 50 |
ChCl:EG (1:3) | 24 | 80 | 1 | 45 |
ChCl:EG (1:4) | 24 | 80 | 1 | 45 |
ChCl:Ox (1:1) | 4.5 | 60 | 3 | 58 |
Aliq:L Met (3:7) | 0.5 | 60 | 0.5 | 46 |
Lid:Ac. Dec (1:2) | 1 | 60 | 1 | 44 |
δ (ppm) | |||||||
---|---|---|---|---|---|---|---|
DES | EG | ChCl * | H2O a | ||||
OH a | O–CH2 a | OH a | O–CH2 a | +N–CH2 a | +N–(CH3)3 a | ||
ChCl:EG (1:2) | 4.87 (4H) | 3.60–3.58 (8H + 2H) b | 5.30 (1H) | 3.99 (2H) | 3.60–3.58 (2H + 8H) c | 3.29 (9H) | 4.33 (0.6H) |
ChCl:EG (1:2) US | 4.88 (4H) | 3.61–3.58 (8H + 2H) b | 5.31 (1H) | 4.00 (2H) | 3.60–3.58 (2H + 8H) c | 3.29 (9H) | 4.35 (0.7H) |
ChCl:EG (1:3) | 4.93 (6H) | 3.63 (12H + 2H) b | 5.29 (1H) | 4.03 (2H) | 3.62 (2H + 12H) c | 3.30 (9H) | 4.40 (0.3H) |
ChCl:EG (1:3) US | 4.93 (6H) | 3.61 (12H + 2H) b | 5.29 (1H) | 4.03 (2H) | 3.61 (2H + 12H) c | 3.30 (9H) | 4.40 (0.7H) |
ChCl:EG (1:4) | 4.99 (8H) | 3.64 (16H + 2H) b | 5.31 (1H) | 4.05 (2H) | 3.64 (2H + 16H) c | 3.31 (9H) | 4.45 (0.4H) |
ChCl:EG (1:4) US | 5.00 (8H) | 3.63 (16H + 2H) b | 5.33 (1H) | 4.05 (2H) | 3.63 (2H + 16H) c | 3.30 (9H) | 4.46 (1H) |
δ (ppm) | ||||||
---|---|---|---|---|---|---|
DES | U | ChCl | H2O a | |||
C–NH2 a | OH a | O–CH2 a | +N–CH2 a | +N–(CH3)3 a | ||
ChCl:U (1:2) | 6.13 (8H) | 5.40 (1H) | 3.96 (2H) | 3.53 (2H) | 3.21 (9H) | 4.43 (0.6H) |
ChCl:U (1:2) US | 6.10 (8H) | 5.37 (1H) | 3.95 (2H) | 3.52 (2H) | 3.20 (9H) | 4.39 (1.3H) |
δ (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
DES | Oxalic Acid | ChCl | H2O a | ||||||
(COOH)2 a | OH a | O–CH2 *,a | O–CH2 a | +N–CH2 *,a | +N–CH2 a | +N–(CH3)3 *,a | +N–(CH3)3 a | ||
ChCl:Ox (1:1) | 7.57 (2H + 1H + 3.7H) b | 7.57 (1H + 2H + 3.7H) c | 4.74 (0.2H) | 4.05 (1.7H) | 3.93 (0.2H) | 3.58 (1.7H) | 3.33 | 3.25 | 7.57 (3.7H + 2H + 1H) d |
(9H) | |||||||||
ChCl:Ox (1:1) US | 7.44 (2H + 1H + 4H) b | 7.44 (1H + 2H + 4H) c | 4.75 (0.2H) | 4.05 (1.8H) | 3.93 (0.2H) | 3.58 (1.8H) | 3.33 | 3.25 | 7.44 (4H + 2H + 1H) d |
(9H) |
δ (ppm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Decanoic Acid | Lidocaine | |||||||||
HOOC | HOOC–CH2 a | OC–CH2– CH2(CH2)6 a | (CH2)6 a | CH3 a | NH a | Ar–H a | Ar–CH3 a | OC–CH2–N a | CH2–CH3 a | CH2–CH3 a |
12.36 (2H) | 2.32 (4H + 6H) b | 1.68 (4H) | 1.41 (24H) | 1.05 (6H) | 9.70 (1H) | 7.07 (3H) | 2.25 (6H + 4H) c | 3.82 (2H) | 3.01 (4H) | 1.20 (6H) |
12.40 (2H) | 2.27 (4H + 6H) b | 1.66 (4H) | 1.38 (24H) | 1.02 (6H) | 9.41 (1H) | 7.03 (3H) | 2.20 (6H + 4H) c | 3.46 (2H) | 2.80 (4H) | 1.12 (6H) |
δ (ppm) | ||||||
---|---|---|---|---|---|---|
L Met | Aliquat 336 TG | Aliq:L Met (3:7) | Aliq:L Met (3:7) US | |||
L-Menthol | H1 | 2.87 (1H) | 2.88 (7H) | 2.87 (7H) | Aliq-L Met (3:7) | |
H2 | 0.67 (1H) | 0.67 (7H) | 0.66 (7H) | |||
H3a | 1.22 (1H) | 1.17 | 1.17 (7H) | |||
H3b | 0.41 (1H) | 0.53–0.35 | 0.52–0.35 | |||
H4a | 1.14 (1H) | 1.12 | 1.11 (7H) | |||
H4b | 0.54 (1H) | 0.53–0.35 | 0.52–0.35 | |||
H5 | 0.93 (1H) | 0.95–0.86 | 0.94–0.85 | |||
H6a | 1.51 (1H) | 1.58 (7H) | 1.59 (7H) | |||
H6b | 0.52 (1H) | 0.53–0.35 | 0.52–0.35 | |||
H7 | 1.83 (1H) | 1.86 (7H) | 1.87 (7H) | |||
CH3 5a | 0.47 (3H) | 0.45 | 0.44 | |||
CH3 7a | 0.36 (3H) | 0.36 | 0.35 | |||
CH3 7b | 0.47 (3H) | 0.45 | 0.44 | |||
OH | 3.52 (1H) | 4.05 (7H) | 4.05 (5H) | |||
Aliquat-336 TG a | +N–CH3 | 2.94 (3H) | 2.74 (9H) | 2.77 (9H) | ||
+NCH2CH2(CH2)nCH3 | 3.18 (6H) | 3.01 (18H) | 3.05 (18H) | |||
+NCH2CH2(CH2)nCH3 | 1.34 (5H) | 1.28 | 1.29 (15H) | |||
+NCH2CH2(CH2)nCH3 | 0.95–0.86 (34H) | 0.95–0.86 | 0.94–0.85 | |||
+NCH2CH2(CH2)nCH3 | 0.45 (9H) | 0.45 | 0.44 |
DES | Density (g/cm3) Heating–Stirring | Density (g/cm3) Ultrasound |
---|---|---|
Hydrophilic DES | ||
ChCl:U (1:2) | 1.185 ± 0.006 | 1.165 ± 0.002 |
ChCl:EG (1:2) | 1.093 ± 0.001 | 1.102 ± 0.005 |
ChCl:EG (1:3) | 1.095 ± 0.002 | 1.105 ± 0.007 |
ChCl:EG (1:4) | 1.100 ± 0.004 | 1.103 ± 0.011 |
ChCl:Ox (1:1) | 1.229 ± 0.003 | 1.210 ± 0.001 |
Hydrophobic DES | ||
Aliq:L Met (3:7) | 0.886 ± 0.003 | 0.887 ± 0.002 |
Lid:Ac. Dec (1:2) | 0.947 ± 0.002 | 0.949 ± 0.001 |
DES | Viscosity (η) (20 °C) | Viscosity (η) (30 °C) | Viscosity (η) (40 °C) | Viscosity (η) (50 °C) | Viscosity (η) (60 °C) | Viscosity (η) (70 °C) |
---|---|---|---|---|---|---|
ChCl:U (1:2) | 1697.50 ± 0.05 | 559.25 ± 0.04 | 316.13 ± 0.03 | 97.75 ± 0.02 | 37.28 ± 0.02 | 15.76 ± 0.02 |
ChCl:U (1:2) US | 94.62 ± 0.01 | 55.46 ± 0.01 | 22.20 ± 0.02 | 13.46 ± 0.01 | 7.16 ± 0.01 | 5.16 ± 0.03 |
ChCl:EG (1:2) | 16.46 ± 0.02 | 10.30 ± 0.01 | 8.94 ± 0.04 | 6.71 ± 0.02 | 4.81 ± 0.01 | 4.03 ± 0.02 |
ChCl:EG (1:2) US | 15.22 ± 0.02 | 10.19 ± 0.03 | 8.11 ± 0.01 | 5.80 ± 0.01 | 4.28 ± 0.01 | 4.02 ± 0.04 |
ChCl:EG (1:3) | 10.21 ± 0.02 | 7.06 ± 0.02 | 5.13 ± 0.03 | 4.08 ± 0.02 | 3.59 ± 0.01 | 2.68 ± 0.02 |
ChCl:EG (1:3) US | 10.10 ± 0.01 | 6.77 ± 0.02 | 5.50 ± 0.03 | 4.51 ± 0.02 | 3.46 ± 0.01 | 3.03 ± 0.01 |
ChCl:EG (1:4) | 11.21 ± 0.01 | 7.33 ± 0.05 | 5.0 ± 0.03 | 3.70 ± 0.02 | 3.18 ± 0.02 | 2.52 ± 0.02 |
ChCl:EG (1:4) US | 8.38 ± 0.02 | 6.72 ± 0.02 | 4.74 ± 0.02 | 3.77 ± 0.01 | 3.14 ± 0.01 | 2.75 ± 0.01 |
ChCl:Ox (1:1) | 1746.75 ± 0.04 | 491.58 ± 0.03 | 272.89 ± 0.05 | 103.36 ± 0.03 | 35.49 ± 0.02 | 17.14 ± 0.06 |
ChCl:Ox (1:1) US | 267.53 ± 0.01 | 126.37 ± 0.04 | 50.60 ± 0.03 | 16.53 ± 0.02 | 7.85 ± 0.02 | 4.83 ± 0.01 |
Ali:L Met (3:7) | 608.90 ± 0.03 | 224.34 ± 0.04 | 75.40 ± 0.01 | 27.39 ± 0.01 | 12.34 ± 0.01 | 7.64 ± 0.06 |
Ali:L Met (3:7) US | 875.36 ± 0.04 | 284.52 ± 0.05 | 121.50 ± 0.01 | 52.75 ± 0.01 | 21.20 ± 0.01 | 12.58 ± 0.01 |
Lid:Ac. Dec (1:2) | 346.54 ± 0.03 | 114.52 ± 0.03 | 40.51 ± 0.01 | 15.93 ± 0.01 | 7.37 ± 0.01 | 4.81 ± 0.05 |
Lid:Ac. Dec (1:2) US | 398.15 ± 0.06 | 160.86 ± 0.04 | 68.27 ± 0.03 | 27.70 ± 0.02 | 9.73 ± 0.01 | 4.90 ± 0.02 |
DES | Water Content (g/L) Heating–Stirring | Water Content (g/L) Ultrasound |
---|---|---|
Hydrophilic DES | ||
ChCl:U (1:2) | 25.43 ± 1.04 | 38.92 ± 2.05 |
ChCl:EG (1:2) | 24.09 ± 0.77 | 24.15 ± 1.02 |
ChCl:EG (1:3) | 20.17 ± 0.80 | 20.21 ± 0.64 |
ChCl:EG (1:4) | 22.90 ± 1.65 | 23.16 ± 2.42 |
ChCl:Ox (1:1) | 45.97 ± 4.12 | 55.72 ± 10.40 |
Hydrophobic DES | ||
Aliq:L Met (3:7) | 15.44 ± 1.61 | 4.07 ± 0.6 |
Lid:Ac. Dec (1:2) | 3.92 ± 0.61 | 3.71 ± 0.37 |
Hydrophilic DES | Eη (KJ/mol) | η0 |
---|---|---|
ChCl:U (1:2) | 77.90 | 2.37 × 10−11 |
ChCl:U (1:2) US | 50.75 | 8.58 × 10−8 |
ChCl:EG (1:2) | 22.77 | 1.33 × 10−3 |
ChCl:EG (1:2) US | 23.02 | 1.26 × 10−3 |
ChCl:EG (1:3) | 21.45 | 1.45 × 10−3 |
ChCl:EG (1:3) US | 19.75 | 2.85 × 10−3 |
ChCl:EG (1:4) | 24.57 | 4.30 × 10−4 |
ChCl:EG (1:4) US | 19.39 | 2.91 × 10−3 |
ChCl:Ox (1:1) | 76.35 | 4.14 × 10−11 |
ChCl:Ox (1:1) US | 70.62 | 1.48 × 10−10 |
Hydrophobic DES | ||
Ali:L Met (3:7) | 75.76 | 1.81 × 10−11 |
Aliq:L Met (3:7) US | 71.44 | 1.48 × 10−10 |
Lid:Ac. Dec (1:2) | 73.32 | 2.60 × 10−11 |
Lid:Ac. Dec (1:2) US | 74.70 | 7.45 × 10−12 |
Chemical Reagent | Reagent Name | Manufacturer | Mass Fraction Purity |
---|---|---|---|
C5H14NOCl | Choline chloride | PanReac AppliChem Castellar del Vallès, Spain | High purity grade |
CO(NH₂)₂ | Urea | PanReac AppliChem Castellar del Vallès, Spain | >99% (N) |
CH2OH-CH2OH | Ethylene glycol | PanReac AppliChem Castellar del Vallès, Spain | Pure |
H2C2O4.2H2O | Oxalic acid 2-hidrate | PanReac AppliChem Castellar del Vallès, Spain | 99% |
C10H20O | L-Menthol | Thermo Fisher Scientific, Waltham, MA, USA | 99% |
[CH3(CH2)7]3NCH3Cl | Aliquat 336 TG | Thermo Fisher Scientific Waltham, MA, USA | - |
C14H22N2O | Lidocaine | Thermo Fisher Scientific Waltham, MA, USA | 97.5% |
CH₃(CH₂)₈COOH | Decanoic acid | Thermo Fisher Scientific Waltham, MA, USA | 99% |
DES | HBA | HBD | HBA:HBD Ratio |
---|---|---|---|
ChCl:U (1:2) | Choline chloride | Urea | 1:2 |
ChCl:EG (1:2) | Choline chloride | Ethylene glycol | 1:2 |
ChCl:EG (1:3) | Choline chloride | Ethylene glycol | 1:3 |
ChCl:EG (1:4) | Choline chloride | Ethylene glycol | 1:4 |
ChCl:Ox (1:1) | Choline chloride | Oxalic acid | 1:1 |
Aliq:L Met (3:7) | Aliquat 336 | L-Menthol | 3:7 |
Lid:Ac. Dec (1:2) | Lidocaine | Decanoic acid | 1:2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, M.I.; García-Díaz, I.; Rodríguez, M.L.; Gutiérrez, M.C.; del Monte, F.; López, F.A. Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound. Molecules 2024, 29, 3089. https://doi.org/10.3390/molecules29133089
Martín MI, García-Díaz I, Rodríguez ML, Gutiérrez MC, del Monte F, López FA. Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound. Molecules. 2024; 29(13):3089. https://doi.org/10.3390/molecules29133089
Chicago/Turabian StyleMartín, María Isabel, Irene García-Díaz, María Lourdes Rodríguez, María Concepción Gutiérrez, Francisco del Monte, and Félix A. López. 2024. "Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound" Molecules 29, no. 13: 3089. https://doi.org/10.3390/molecules29133089
APA StyleMartín, M. I., García-Díaz, I., Rodríguez, M. L., Gutiérrez, M. C., del Monte, F., & López, F. A. (2024). Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound. Molecules, 29(13), 3089. https://doi.org/10.3390/molecules29133089