Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process
Abstract
:1. Introduction
2. Results
2.1. Plotting of Standard Curves
2.2. Quantitative Determination of SGW
2.3. Results of Chemical Composition
2.3.1. Multivariate Statistical Analysis of Chemical Composition following Repeated Thermal Processes on SGW
2.3.2. Discovery and Identification of Biomarkers for Chemical Composition of Repeated Thermal Processes on SGW
2.4. Radical Scavenging Activity
2.5. Entropy Weight Method to Analyze SGW Weights
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction and Preparation of Steamed Ginseng Extract
4.3. Sample Preparation for Mass Spectrometry
4.4. The Quantitative Analysis of SGW
4.4.1. Total Sugar Content Assay
4.4.2. Total Saponins Content Assay
4.4.3. Total Reducing Sugar Content Assay
4.5. UHPLC-Q-Exactive-MS/MS Conditions
4.6. Antioxidant Activity Assays
4.6.1. DPPH Scavenging Activity Assay
4.6.2. FRAP Scavenging Activity Assay
4.6.3. ABTS+ Scavenging Activity Assay
4.6.4. Hydroxyl Radical Assay
4.7. Data Processing and Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, W.; Cai, S.; Zhao, J.; Hu, S.; Zang, C.; Xu, J.; Hu, L. Beyond genome: Advanced omics progress of Panax ginseng. Plant Sci. 2024, 341, 112022. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ji, S.H.; Choi, B.R.; Choi, D.J.; Lee, Y.G.; Kim, H.G.; Kim, G.S.; Kim, K.; Lee, Y.H.; Baek, N.I.; et al. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax ginseng Products. Molecules 2018, 23, 2062. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ren, C.; Li, H.J.; Wu, Y.C. Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. Food Bioprocess Technol. 2022, 15, 47–71. [Google Scholar] [CrossRef]
- Peng, X.; Hao, M.; Zhao, Y.; Cai, Y.; Chen, X.; Chen, H.; Zhang, Y.; Dong, L.; Liu, X.; Ding, C.; et al. Red ginseng has stronger anti-aging effects compared to ginseng possibly due to its regulation of oxidative stress and the gut microbiota. Phytomedicine 2021, 93, 153772. [Google Scholar] [CrossRef] [PubMed]
- Min, S.J.; Kim, H.; Yambe, N.; Shin, M.S. Ameliorative Effects of Korean-Red-Ginseng-Derived Polysaccharide on Antibiotic-Associated Diarrhea. Polymers 2024, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Zhang, S.; Skinner, D.; Koch, C.G.; Smith, M.J.; Lim, D.J.; Grayson, J.W.; Tearney, G.J.; Rowe, S.M.; Woodworth, B.A. Red ginseng aqueous extract improves mucociliary transport dysfunction and histopathology in CF rat airways. J. Cyst. Fibros. 2023, 22, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Jeddy, N.; Saravanan, R.; Natrajan, R.; Sai Lakshmi, L.J.; Ashwath, V.; Singhal, I. Comparison of the effectiveness of red ginseng herbal mouth rinse with chlorhexidine and saline in oral cancer patients: A pilot double-blinded randomized control trial. J. Oral Maxillofac. Pathol. 2023, 27, 778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.E.; Chu, M.Y.; Jiang, T.; Song, X.H.; Hou, J.F.; Cheng, L.Y.; Feng, Y.; Chen, C.B.; Wang, E.P. By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. Molecules 2022, 27, 8202. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Piao, M.J.; Fernando, P.; Herath, H.; Yi, J.M.; Hyun, J.W. Korean Red Ginseng Attenuates Particulate Matter-Induced Senescence of Skin Keratinocytes. Antioxidants 2023, 12, 1516. [Google Scholar] [CrossRef]
- Lee, D.Y.; Arndt, J.; O’Connell, J.F.; Egan, J.M.; Kim, Y. Red Ginseng Attenuates the Hepatic Cellular Senescence in Aged Mice. Biology 2024, 13, 36. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Zhang, X.; Yang, L.; Wang, Z. Ginsenoside Contents in Ginseng: Quality by Design-Coupled Two-Dimensional Liquid Chromatography Technique. J. Chromatogr. Sci. 2022, 60, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Zhang, C.F.; Zhang, Q.H.; Yuan, C.S. Phytochemistry of Red Ginseng, A Steam-Processed Panax ginseng. Am. J. Chin. Med. 2024, 52, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.M.; Chen, T.B.; Xiao, S.Y.; Zha, Q.L.; Luo, P.; Wang, Y.P.; Cui, X.M.; Liu, L.; Zhou, H. A new approach for authentication of four ginseng herbs and their related products based on the simultaneous quantification of 19 ginseng saponins by UHPLC-TOF/MS coupled with OPLS-DA. Rsc Adv. 2017, 7, 46839–46851. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Sun, M.H.; Yuan, G.H.; Zhou, Q.; Liu, J.Y. Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method. Sustainability 2019, 11, 3793. [Google Scholar] [CrossRef]
- Kim, C.J.; Kim, B.M.; Kim, C.S.; Baek, J.Y.; Jung, I.C. Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time. J. Pharmacopunct. 2020, 23, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Gao, Y.; Xu, S.Y.; Liu, H.; Xue, X.; Zhang, Y.; Zhang, H.; Liu, M.N.; Xiong, H.; Lin, R.C.; et al. Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng. J. Ginseng Res. 2018, 42, 277–287. [Google Scholar] [CrossRef]
- Hwang, C.R.; Lee, S.H.; Jang, G.Y.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J. Ginseng Res. 2014, 38, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y.; Dou, D. Anti-prostate cancer mechanism of black ginseng during the “nine steaming and nine sun-drying” process based on HPLC analysis combined with vector space network pharmacology. Discov. Oncol. 2024, 15, 12. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, J.; Wang, C.Z.; Zhang, J.Q.; Ruan, C.C.; Sun, G.Z.; Yuan, C.S. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng. J. Agric. Food Chem. 2016, 64, 5389–5399. [Google Scholar] [CrossRef]
- Gao, D.; Kim, J.H.; Vinh, L.B.; Seo, E.Y.; Yang, S.Y.; Cho, C.W.; Kim, Y.H.; Kim, K.T.; Sim, J.; Kang, J.S. Effect of citric acid and heat treatment on the content of less-polar ginsenosides in flower buds of Panax ginseng. Prep. Biochem. Biotechnol. 2022, 52, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Balan, P.; Popovich, D.G. Changes of Ginsenoside Composition in the Creation of Black Ginseng Leaf. Molecules 2020, 25, 2809. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.B.; Jeong, D.E.; Lee, D.E.; Yoo, J.H.; Kim, Y.S.; Kim, T.Y. Structural Identification of Ginsenoside Based on UPLC-QTOF-MS of Black Ginseng (Panax Ginseng C.A. Mayer). Metabolites 2024, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Jo, H.K.; Im, B.O.; Kim, S.; Whang, W.K.; Ko, S.K. Changes in the Contents of Prosapogenin in the Red Ginseng (Panax ginseng) Depending on Steaming Batches. J. Ginseng Res. 2012, 36, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qin, K.M.; Li, W.D.; Yin, F.Z.; Cai, H.; Cai, B.C. Research on chemical reactions during ginseng processing. Zhongguo Zhong Yao Za Zhi 2014, 39, 3701–3706. [Google Scholar] [PubMed]
- Du, Q.Q.; Liu, S.Y.; Xu, R.F.; Li, M.; Song, F.R.; Liu, Z.Q. Studies on structures and activities of initial Maillard reaction products by electrospray ionisation mass spectrometry combined with liquid chromatography in processing of red ginseng. Food Chem. 2012, 135, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Liu, F.; Ji, W.; Wang, X.; Li, L. Comprehensive Investigation of Ginsenosides in the Steamed Panax quinquefolius with Different Processing Conditions Using LC-MS. Molecules 2024, 29, 623. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Cheng, Y.; Zhang, X.; Wang, Y.P.; Zhao, H. Comparative analysis of physicochemical properties, ginsenosides content and α-amylase inhibitory effects in white ginseng and red ginsen. Food Sci. Hum. Wellness 2023, 12, 14–27. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Luo, D.; Cheng, Y.J.; Ma, J.F.; Wang, Y.M.; Liang, Q.L.; Luo, G.A. Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS(n)-based multicomponent quantification fingerprint. J. Agric. Food Chem. 2012, 60, 8213–8224. [Google Scholar] [CrossRef]
- Jin, Y.; Kim, Y.J.; Jeon, J.N.; Wang, C.; Min, J.W.; Noh, H.Y.; Yang, D.C. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum. Nutr. 2015, 70, 141–145. [Google Scholar] [CrossRef]
- Huang, L.; Xu, D.-Q.; Yue, S.-J.; Chen, Y.-Y.; Fu, R.-J.; Lu, Z.; Tang, Y.-P. Research on Q-markers of Eupatorium lindleyanum based on analytic hierarchy process-entropy weight method and network pharmacology. China J. Chin. Mater. Medica 2021, 46, 5545–5554. [Google Scholar]
- Oh, C.H.; Kim, G.N.; Lee, S.H.; Lee, J.S.; Jang, H.D. Effects of Heat Processing Time on Total Phenolic Content and Antioxidant Capacity of Ginseng Jung Kwa. J. Ginseng Res. 2010, 34, 198–204. [Google Scholar] [CrossRef]
- Park, C.H.; Choi, J.S.; Yokozawa, T. Increase in the hydroxyl radical-scavenging activity of Panax ginseng and ginsenosides by heat-processing. Drug Discov. Ther. 2018, 12, 114–121. [Google Scholar] [CrossRef]
- Yue, F.F.; Zhang, J.R.; Xu, J.X.; Niu, T.F.; Lu, X.; Liu, M.S. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022, 9, 10. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G. Antioxidant activity of polysaccharides from different sources of ginseng. Int. J. Biol. Macromol. 2019, 125, 906–908. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC(50) using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Tang, J.; Xiong, L.; Shu, X.; Chen, W.; Li, W.; Li, J.; Ma, L.; Xiao, Y.; Li, L. Antioxidant effects of bioactive compounds isolated from cordyceps and their protective effects against UVB-irradiated HaCaT cells. J. Cosmet. Dermatol. 2019, 18, 1899–1906. [Google Scholar] [CrossRef]
- Kang, K.S.; Kim, H.Y.; Pyo, J.S.; Yokozawa, T. Increase in the free radical scavenging activity of ginseng by heat-processing. Biol. Pharm. Bull. 2006, 29, 750–754. [Google Scholar] [CrossRef] [PubMed]
Pattern | No. | Extract m/z | t/min | Metabolites | Formula | Monoisotopic Mass | Adduct | Mass Error (mDa) | 1 vs. 3 | 1 vs. 5 | 1 vs. 7 | 1 vs. 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ESI− | 1 | 435.0563 | 0.82 | 3,4-Dihydroxyphenylpyruvate | C15H20O10 | 195.0299 | 2M+FA-H | 4 | −1.59 | −2.21 | −2.49 | −2.42 |
2 | 777.1628 | 1.16 | 3-Methylbutyl glucosinolate | C6H12N3PS | 389.0814 | 2M-H | 9 | −2.36 | −3.26 | −3.54 | −3.32 | |
3 | 779.1603 | 1.16 | Dimethyl 2-galloylgalactarate | C30H40O6 | 390.0798 | 2M-H | 10 | −2.30 | −3.20 | −3.47 | −3.28 | |
4 | 719.2043 | 1.17 | 3-Methoxy-4-hydroxyphenylglycol glucuronide | C54H92O23 | 360.1056 | 2M-H | 0 | −2.06 | −3.02 | −3.30 | −2.96 | |
5 | 539.14 | 1.24 | Phenylglucuronide | C29H40N8O5 | 270.0740 | 2M-H | 1 | −1.28 | −1.97 | −2.21 | −1.99 | |
6 | 767.5313 | 1.26 | Persicachrome | C58H98O26 | 384.2664 | 2M-H | 7 | 0.26 | 0.83 | 1.58 | 1.49 | |
7 | 387.1176 | 5.84 | Ferulic acid | C54H92O24 | 194.0579 | 2M-H | 23 | 4.14 | 1.60 | 3.44 | 3.61 | |
8 | 455.1047 | 5.84 | Epicatechin 3-O-(4-methylgallate) | C53H90O22 | 456.1056 | M-H | 14 | 8.87 | 1.94 | 7.44 | 7.80 | |
9 | 767.5309 | 5.88 | Persicaxanthin | C48H82O18 | 384.2664 | 2M-H | 7 | 1.34 | 1.32 | 2.11 | 1.69 | |
10 | 377.0881 | 5.94 | 3,3′,5-Trihydroxy-4′,7-dimethoxyflavanone | C42H66O14 | 332.0896 | M+FA-H | 1 | 7.14 | 1.30 | 6.45 | 6.64 | |
11 | 991.5515 | 15.38 | Ginsenoside Re | C10H10O4 | 946.5501 | M+FA-H | 3 | −2.28 | −3.39 | −3.99 | −3.67 | |
12 | 815.4829 | 21.62 | Majonoside R1 | C12H14O7 | 816.4871 | M-H | 4 | −2.01 | −3.27 | −4.01 | −3.62 | |
13 | 1107.596 | 24.96 | Ginsenoside Rb1 | C12H23NO9S2 | 1108.6029 | M-H | 0 | −2.70 | −4.30 | −4.96 | −4.70 | |
14 | 955.4933 | 26.04 | Ginsenoside Ro | C29H46O3 | 956.4981 | M-H | 3 | −1.87 | −2.80 | −3.01 | −1.89 | |
15 | 561.293 | 26.23 | Hordatine B | C15H18O12 | 580.3122 | M-H2O-H | 1 | −2.87 | −4.20 | −4.77 | −4.51 | |
16 | 1209.629 | 26.43 | Ginsenoside Ra1 | C25H36O3 | 1210.6346 | M-H | 1 | −2.73 | −4.30 | −4.85 | −4.41 | |
17 | 1123.594 | 27.05 | Ginsenoside Rb2 | C23H20O10 | 1078.5924 | M+FA-H | 3 | −2.32 | −3.63 | −4.23 | −3.97 | |
18 | 1077.584 | 27.24 | Ginsenoside Rc | C25H36O3 | 1078.5924 | M+FA-H | 3 | −2.50 | −4.02 | −4.75 | −4.42 | |
19 | 945.5425 | 28.76 | Ginsenoside Rd | C12H22O11 | 946.5501 | M-H | 0 | −2.37 | −3.98 | −4.76 | −4.37 | |
20 | 793.4408 | 34.44 | Spinasaponin A | C42H66O14 | 794.4453 | M-H | 4 | −2.35 | −3.45 | −4.38 | −4.34 | |
21 | 333.2318 | 42.87 | (S)-10,16-Dihydroxyhexadecanoic acid | C16H32O4 | 288.2301 | M+FA-H | 11 | −0.62 | 3.28 | 0.17 | 0.95 | |
22 | 369.2081 | 42.87 | Ecgonine | C9H15NO3 | 185.1052 | 2M-H | 14 | −0.46 | 2.85 | 0.13 | 0.74 | |
23 | 423.33 | 44.04 | Camellenodiol | C29H46O3 | 442.3447 | M-H2O-H | 9 | −1.05 | 2.79 | −0.02 | 1.48 | |
ESI+ | 24 | 462.3461 | 1.39 | Galactosylsphingosine | C24H47NO7 | 461.3353 | M+H | 8 | 0.42 | 0.89 | 1.14 | 1.13 |
25 | 367.2169 | 1.44 | Demethoxyfumitremorgin C | C21H23N3O2 | 349.1790 | M+NH4 | 11 | 0.00 | 0.24 | 0.69 | 0.43 | |
26 | 300.2 | 1.92 | Miltirone | C19H22O2 | 282.1620 | M+NH4 | 14 | −0.55 | 2.29 | 0.65 | 0.23 | |
27 | 328.2313 | 1.97 | Menaquinol | C21H26O2 | 310.1933 | M+NH4 | 13 | −0.35 | 2.68 | 1.02 | 0.63 | |
28 | 344.2258 | 2.12 | Isopiperolein B | C19H30O5 | 343.2147 | M+H | 11 | −0.46 | 2.65 | 0.69 | 0.24 | |
29 | 327.2 | 2.18 | Heptaethylene glycol | C14H30O8 | 326.1941 | M+H | 6 | −0.50 | 2.60 | 0.67 | 0.20 | |
30 | 388.2518 | 2.44 | Octaethylene glycol | C16H34O9 | 370.2203 | M+NH4 | 6 | −0.43 | 2.92 | 0.77 | 0.30 | |
31 | 460.3084 | 2.85 | Muzanzagenin | C27H38O5 | 442.2719 | M+NH4 | 4 | −0.41 | 3.55 | 0.85 | 0.29 | |
32 | 476.3039 | 3.34 | Lucidenic acid A | C27H38O6 | 458.2668 | M+NH4 | 5 | −0.46 | 3.14 | 0.83 | 0.32 | |
33 | 605.3827 | 3.92 | Ginsenoyne H | C19H26O3 | 302.1882 | 2M+H | 2 | 1.06 | −0.45 | 2.17 | 1.04 | |
34 | 567.4277 | 3.92 | Cryptocapsone | C40H54O2 | 566.4124 | M+H | 14 | 0.92 | −0.18 | 1.35 | 0.96 | |
35 | 679.5078 | 3.92 | Avocadene 1-acetate | C19H36O4 | 328.2614 | 2M+Na | 6 | −0.17 | 0.13 | −0.11 | −0.03 | |
36 | 358.2571 | 43.05 | 2-alpha-Ethoxydihydrophytuberin | C19H32O5 | 340.2250 | M+NH4 | 5 | −0.13 | −0.01 | −0.21 | 0.09 | |
37 | 359.2593 | 43.16 | Isolinderanolide | C21H36O3 | 336.2664 | M+Na | 10 | 0.07 | 0.09 | 0.02 | 0.09 |
IC50 | SGW1 | SGW2 | SGW3 | SGW4 | SGW5 | SGW6 | SGW7 | SGW8 | SGW9 |
---|---|---|---|---|---|---|---|---|---|
DPPH | 12.64 | 12.74 | 15.33 | 12.27 | 7.78 | 9.15 | 8.10 | 8.82 | 7.34 |
FRAP | 2.08 | 2.04 | 2.34 | 2.24 | 2.05 | 2.31 | 2.41 | 2.29 | 1.93 |
ABTS+ | 4.28 | 7.84 | 9.67 | 8.08 | 8.10 | 4.33 | 3.74 | 27.27 | 6.86 |
OH | 38.43 | 28.54 | 34.09 | 22.6 | 22.81 | 43.69 | 20.33 | 41.32 | 35.46 |
Layers | Indicator | Weight |
---|---|---|
Contents | Total sugar | 0.179324 |
Total saponins | 0.081962 | |
Reducing sugar | 0.149848 | |
Non-reducing sugar | 0.173238 | |
Antioxidant capacities | OH | 0.134299 |
ABTS | 0.056045 | |
FRAP | 0.132912 | |
DPPH | 0.092371 |
Sample | Comprehensive Value |
---|---|
SGW1 | 0.260027031 |
SGW2 | 0.299462879 |
SGW3 | 0.196067887 |
SGW4 | 0.404293176 |
SGW5 | 0.707125369 |
SGW6 | 0.50339906 |
SGW7 | 0.852184669 |
SGW8 | 0.652176659 |
SGW9 | 0.779304053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-D.; Zhang, H.-E.; Han, L.-S.; Li, G.-Y.; Yang, K.-L.; Zhao, Y.; Wang, J.-Q.; Lai, Y.-B.; Chen, C.-B.; Wang, E.-P. Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process. Molecules 2024, 29, 3092. https://doi.org/10.3390/molecules29133092
Wang Y-D, Zhang H-E, Han L-S, Li G-Y, Yang K-L, Zhao Y, Wang J-Q, Lai Y-B, Chen C-B, Wang E-P. Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process. Molecules. 2024; 29(13):3092. https://doi.org/10.3390/molecules29133092
Chicago/Turabian StyleWang, Yu-Dan, Hui-E Zhang, Lu-Sheng Han, Gen-Yue Li, Kai-Li Yang, Yuan Zhao, Jia-Qi Wang, Yang-Bin Lai, Chang-Bao Chen, and En-Peng Wang. 2024. "Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process" Molecules 29, no. 13: 3092. https://doi.org/10.3390/molecules29133092
APA StyleWang, Y. -D., Zhang, H. -E., Han, L. -S., Li, G. -Y., Yang, K. -L., Zhao, Y., Wang, J. -Q., Lai, Y. -B., Chen, C. -B., & Wang, E. -P. (2024). Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process. Molecules, 29(13), 3092. https://doi.org/10.3390/molecules29133092