A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of DESs
2.2. Optimization of the DLLME-SHDES-HDESD Procedure
2.2.1. Effect of Extractant Type and Extractant Volume
2.2.2. Effect of Dispersant Type and Dispersant Volume
2.2.3. Effect of pH and Salt Addition
2.2.4. Effect of Ultrasounication Time
2.3. Method Validation
2.4. Comparison of DLLME-SHDES-HDESD with Other Microextraction Methods
2.5. Real Water Sample Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Instrumentation and Chromatographic Conditions
3.3. Sample Preparation
3.4. DES Preparation
3.5. Determination of Density and Melting Point
3.6. DLLME-SHDES-HDESD Procedure
3.7. Enrichment Factor Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erickson, M.D.; Kaley, R.G. Applications of polychlorinated biphenyls. Environ. Sci. Pollut. Res. 2011, 18, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Faroon, O.; Ruiz, P. Polychlorinated biphenyls. Toxicol. Ind. Health 2016, 32, 1825–1847. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.D.G.; Wong, L.; Turner, W.E.; Caudill, S.P.; Dipietro, E.S.; Mcclure, P.C.; Cash, T.P.; Osterloh, J.D.; Pirkle, J.L.; Sampson, E.J.; et al. Levels in the U.S. Population of those persistent organic pollutants (2003−2004) included in the stockholm convention or in other long-range transboundary air pollution agreements. Environ. Sci. Technol. 2009, 43, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Ismail, Z.; Selamat, M.I.; Sheikh Abdul Kadir, S.H.; Shibraumalisi, N.A. A review of polychlorinated biphenyls (PCBs) pollution in the air: Where and how much are we exposed to? Int. J. Environ. Res. Public Health 2022, 19, 13923. [Google Scholar] [CrossRef] [PubMed]
- Ngoubeyou, P.S.K.; Wolkersdorfer, C.; Ndibewu, P.P.; Augustyn, W. Toxicity of polychlorinated biphenyls in aquatic environments—A review. Aquat. Toxicol. 2022, 251, 106284. [Google Scholar] [CrossRef] [PubMed]
- Megahed, A.M.; Dahshan, H.; Abd-El-Kader, M.A.; Abd-Elall, A.M.M.; Elbana, M.H.; Nabawy, E.; Mahmoud, H.A. Polychlorinated biphenyls water pollution along the river nile, egypt. Sci. World J. 2015, 2015, 389213. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Q.; Liu, X.; Wang, J. Occurrence, distribution and risk assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in nine water sources. Ecotox. Environ. Saf. 2015, 115, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Si, X.; Yuan, Y.; Chen, K.; Qin, K. Ultra-trace extraction of two bactericides via ultrasound-assisted dispersive liquid-liquid microextraction. J. Chromatogr. Sci. 2021, 59, 182–190. [Google Scholar] [CrossRef]
- Machado, I.; Tissot, F. Dispersive liquid-liquid microextraction as a preconcentration alternative to increase ETAAS sensitivity in the analysis of molybdenum in bovine meat and pasture samples. Talanta 2020, 212, 120783. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.R.; Danielson, N.D. Solvent-terminated dispersive liquid-liquid microextraction: A tutorial. Anal. Chim. Acta 2018, 1016, 1–11. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tay, K.S.J.; See, H.H. Recent advances in dispersive liquid-liquid microextraction for pharmaceutical analysis. Crit. Rev. Anal. Chem. 2024, 2, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S. Trace-level analysis of polychlorinated biphenyls, organochlorine pesticides and polycyclic aromatic hydrocarbons in human plasma or serum by dispersive liquid–liquid microextraction and gas chromatography–tandem mass spectrometry. Biomed. Chromatogr. 2022, 36, e5360. [Google Scholar] [CrossRef] [PubMed]
- Leong, M.; Huang, S. Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J. Chromatogr. A 2008, 1211, 8–12. [Google Scholar] [CrossRef] [PubMed]
- El-Deen, A.K.; Shimizu, K. Deep eutectic solvents as promising green solvents in dispersive liquid–liquid microextraction based on solidification of floating organic droplet: Recent applications, challenges and future perspectives. Molecules 2021, 26, 7406. [Google Scholar] [CrossRef]
- Leong, M.; Fuh, M.; Huang, S. Beyond dispersive liquid–liquid microextraction. J. Chromatogr. A 2014, 1335, 2–14. [Google Scholar] [CrossRef]
- An, J.; Trujillo-Rodríguez, M.J.; Pino, V.; Anderson, J.L. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J. Chromatogr. A 2017, 1500, 1–23. [Google Scholar] [CrossRef]
- Morozova, O.V.; Vasil’Eva, I.S.; Shumakovich, G.P.; Zaitseva, E.A.; Yaropolov, A.I. Deep eutectic solvents for biotechnology applications. Biochem.-Mosc. 2023, 88, S150–S175. [Google Scholar] [CrossRef]
- Plastiras, O.; Andreasidou, E.; Samanidou, V. Microextraction techniques with deep eutectic solvents. Molecules 2020, 25, 6026. [Google Scholar] [CrossRef]
- Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 2017, 135, 33–38. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mogaddam, M.R.A.; Aghamassab, M. Deep eutectic solvent-based dispersive liquid–liquid microextraction. Anal. Methods 2016, 8, 2576–2583. [Google Scholar]
- Grau, J.; Azorín, C.; Benedé, J.L.; Chisvert, A.; Salvador, A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J. Sep. Sci. 2022, 45, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, S.; Sun, P.; Yu, Z.; Yang, X. Vortex-assisted hydrophobic natural deep eutectic solvent liquid-liquid microextraction for the removal of silver ions from environmental water. Anal. Bioanal. Chem. 2024, 416, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhang, Y.; Zhao, Q.; Chen, A.; Jiao, B. Ultrasound-assisted dispersive liquid-phase microextraction by solidifying l-menthol-decanoic acid hydrophobic deep eutectic solvents for detection of five fungicides in fruit juices and tea drinks. J. Sep. Sci. 2021, 44, 3870–3882. [Google Scholar] [CrossRef]
- Mero, A.; Moody, N.R.; Husanu, E.; Mezzetta, A.; D’Andrea, F.; Pomelli, C.S.; Bernaert, N.; Paradisi, F.; Guazzelli, L. Challenging DESs and ILs in the valorization of food waste: A case study. Front. Chem. 2023, 11, 1270221. [Google Scholar] [CrossRef] [PubMed]
- Wazeer, I.; Hizaddin, H.F.; Hashim, M.A.; Hadj-Kali, M.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents. J. Environ. Chem. Eng. 2022, 10, 108574. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, H.; Yong, W.F.; She, Q.; Esteban, J. Status and advances of deep eutectic solvents for metal separation and recovery. Green Chem. Int. J. Green Chem. Resour. GC 2022, 24, 1895–1929. [Google Scholar] [CrossRef]
- Lu, W.; Liu, S.; Wu, Z. Recent application of deep eutectic solvents as green solvent in dispersive liquid-liquid microextraction of trace level chemical contaminants in food and water. Crit. Rev. Anal. Chem. 2022, 52, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Makoś, P.; Przyjazny, A.; Boczkaj, G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 2018, 1570, 28–37. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, Y.; Yu, J.; Zheng, S.; Qin, F.; Zhao, L. Analysis of six preservatives in beverages using hydrophilic deep eutectic solvent as disperser in dispersive liquid-liquid microextraction based on the solidification of floating organic droplet. J. Pharm. Biomed. Anal. 2021, 195, 113889. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: Assessment of the method deleterious impact on the environment using analytical eco-scale and green analytical procedure index. Microchem. J. 2019, 149, 103988. [Google Scholar]
- Shishov, A.; Volodina, N.; Nechaeva, D.; Gagarinova, S.; Bulatov, A. Deep eutectic solvents as a new kind of dispersive solvent for dispersive liquid–liquid microextraction. RSC Adv. 2018, 8, 38146–38149. [Google Scholar] [CrossRef]
- Peng, C.; Hu, J.; Li, X. Analysis of polycyclic aromatic hydrocarbons in water samples using deep eutectic solvent as a dispersant in dispersive liquid–liquid microextraction based on the solidification of floating organic droplet. Water 2023, 15, 2579. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Li, S.; Zhu, G. Air-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents for the simultaneous determination of bisphenols and polycyclic aromatic hydrocarbons in tea infusions via hplc. Food Chem. 2021, 348, 129106. [Google Scholar] [CrossRef]
- Li, T.; Song, Y.; Li, J.; Zhang, M.; Shi, Y.; Fan, J. New low viscous hydrophobic deep eutectic solvents in vortex-assisted liquid-liquid microextraction for the determination of phthalate esters from food-contacted plastics. Food Chem. 2020, 309, 125752. [Google Scholar] [CrossRef]
- Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 2018, 245, 578–585. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Z.; Li, X.; Huang, X.; Teng, C.; Chen, Z.; Jing, X.; Zhao, W. Analysis of pyrethroids in cereals by HPLC with a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets. Anal. Methods 2021, 13, 636–641. [Google Scholar] [CrossRef]
- Galuch, M.B.; Magon, T.F.S.; Silveira, R.; Nicácio, A.E.; Pizzo, J.S.; Bonafe, E.G.; Maldaner, L.; Santos, O.O.; Visentainer, J.V. Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem. 2019, 282, 120–126. [Google Scholar] [CrossRef]
- Wang, X.; Shu, B.; Li, S.; Yang, Z.; Qiu, B. Quechers followed by dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for organochlorine pesticides analysis in fish. Talanta 2017, 162, 90–97. [Google Scholar] [CrossRef]
- Jouyban, A.; Farajzadeh, M.A.; Afshar Mogaddam, M.R. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; Application in determination of some pesticides in milk samples. Talanta 2020, 206, 120169. [Google Scholar] [CrossRef]
- Jovanović, M.S.; Krgović, N.; Živković, J.; Stević, T.; Zdunić, G.; Bigović, D.; Aavikin, K. Ultrasound-assisted natural deep eutectic solvents extraction of bilberry anthocyanins: Optimization, bioactivities, and storage stability. Plants 2022, 11, 2680. [Google Scholar] [CrossRef] [PubMed]
- Temerdashev, Z.; Chervonnaya, T.; Musorina, T.; Shpigun, O. A new scheme of dispersive liquid-liquid microextraction of polychlorinated biphenyls having different degrees of chlorination from waters with subsequent identification by gas chromatography coupled with mass spectrometry. Microchem. J. 2023, 194, 109321. [Google Scholar] [CrossRef]
- Li, S.; Qi, J.; Zhou, B.; Guo, J.; Tong, Y.; Zhou, Q.; Jiang, L.; Yang, R.; Chen, C.; Zhang, Y.; et al. Sensitive determination of polychlorinated biphenyls from beverages based on switchable solvent microextraction: A robust methodology. Chemosphere 2022, 297, 134185. [Google Scholar] [CrossRef] [PubMed]
- Yurdakok-Dikmen, B.; Kuzukiran, O.; Filazi, A.; Kara, E. Measurement of selected polychlorinated biphenyls (PCBs) in water via ultrasound assisted emulsification–microextraction (USAME) using low-density organic solvents. J. Water Health 2016, 14, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Cheng, J.; Matsadiq, G.; Liu, L.; Li, J. Dispersive liquid–liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples. Anal. Chim. Acta 2010, 674, 201–205. [Google Scholar] [CrossRef]
- Ozcan, S.; Tor, A.; Aydin, M.E. Determination of selected polychlorinated biphenyls in water samples by ultrasound-assisted emulsification-microextraction and gas chromatography-mass-selective detection. Anal. Chim. Acta 2009, 647, 182–188. [Google Scholar] [CrossRef]
DES | [HBA][HBD](Molar Ratio) | XHBA | XHBD | Mw a [g/mol] | ρ [g/cm3] | MP b [°C] |
---|---|---|---|---|---|---|
DES1 | [thymol][decanoic acid](2:1) | 0.67 | 0.33 | 157.50 | 0.9589 | 19.3 |
DES2 | [thymol][decanoic acid](3:2) | 0.60 | 0.40 | 159.04 | 0.9521 | 18.7 |
DES3 | [thymol][decanoic acid](1:1) | 0.50 | 0.50 | 161.25 | 0.9432 | 17.1 |
DES4 | [thymol][decanoic acid](1:2) | 0.33 | 0.67 | 164.99 | 0.9358 | 18.0 |
DES5 | [ChCl][formic acid](1:2) | 0.33 | 0.67 | 77.23 | 1.149 | −25.9 |
DES6 | [ChCl][acetic acid](1:2) | 0.33 | 0.67 | 86.58 | 1.096 | −22.1 |
DES7 | [ChCl][propionic acid](1:2) | 0.33 | 0.67 | 95.93 | 1.065 | −20.5 |
PCB | LR (μg/L) | R2 | LOD (ng/L) | LOQ (ng/L) | %RSD (n = 5) | EF |
---|---|---|---|---|---|---|
PCB 28 | 0.01–5.0 | 0.9993 | 3.4 | 11.4 | 3.2 | 193 |
PCB 52 | 0.01–5.0 | 0.9996 | 3.8 | 12.7 | 2.3 | 199 |
PCB 101 | 0.01–5.0 | 0.9994 | 4.1 | 13.8 | 2.7 | 182 |
PCB 118 | 0.01–5.0 | 0.9990 | 3.0 | 10.1 | 3.6 | 187 |
PCB 138 | 0.01–5.0 | 0.9985 | 4.3 | 14.3 | 4.1 | 185 |
PCB 153 | 0.02–5.0 | 0.9989 | 4.9 | 16.2 | 4.0 | 204 |
PCB 180 | 0.02–5.0 | 0.9992 | 5.1 | 17.0 | 3.5 | 195 |
Extraction Method | Detection Method | Matrix | Extractant | Dispersant | LOD (ng/L) | %RSD | EF | Reference |
---|---|---|---|---|---|---|---|---|
DLLME | GC-MS | Water | Ethyl acetate | Acetone | 7.5–15 | 4.3–7.9 | / | [42] |
SSME a | GC-MS | Beverages | Switchable forms of heptanoic acid | / e | 2.0–5.0 | 1.9–4.2 | 16.2–17.9 | [43] |
LDS-USAEME b | GC-MS | Water | Isooctane | / | 3–12 | 2.24–3.55 | / | [44] |
DLLME-SFOD | GC-ECD d | Water | 1-undecanol | Acetonitrile | 3.3–5.4 | 5.8–8.8 | 494–606 | [45] |
USAEME c | GC-MS | Water | Chloroform | / | 14–30 | / | / | [46] |
DLLME-SHDES- HDESD | GC-MS | Water | DES (thymol/docanoic acid = 3:2, molar ratio) | DES (ChCl/acetic acid = 1:2, molar ratio) | 3.0–5.1 | 2.3–4.1 | 182–204 | This study |
PCB | Tap Water | River Water | Industrial Water | ||||
---|---|---|---|---|---|---|---|
Spiked (μg/L) | Found (μg/L) | Spiked Recovery (%, n = 3) | Found (μg/L) | Spiked Recovery (%, n = 3) | Found (μg/L) | Spiked Recovery (%, n = 3) | |
PCB 28 | 0 | nd a | nd | nd | nd | nd | nd |
0.1 | 0.0996 | 99.60 b ± 2.9 c | 0.1028 | 102.80 ± 3.1 | 0.0985 | 98.50 ± 3.2 | |
1 | 1.0132 | 101.32 ± 3.4 | 0.9718 | 97.18 ± 3.2 | 0.9679 | 96.79 ± 2.7 | |
PCB 52 | 0 | nd | nd | nd | nd | 0.36 | nd |
0.1 | 0.0936 | 93.60 ± 2.1 | 0.0963 | 96.30 ± 2.6 | 0.4586 | 98.60 ± 2.5 | |
1 | 0.9584 | 95.84 ± 2.2 | 0.9258 | 92.58 ± 2.5 | 1.2939 | 93.39 ± 2.7 | |
PCB 101 | 0 | nd | nd | nd | nd | nd | nd |
0.1 | 0.1022 | 102.20 ± 2.8 | 0.0964 | 96.40 ± 3.2 | 0.1015 | 101.50 ± 3.1 | |
1 | 0.9588 | 95.88 ± 3.0 | 1.0302 | 103.02 ± 2.7 | 0.9963 | 99.63 ± 3.3 | |
PCB 118 | 0 | nd | nd | nd | nd | nd | nd |
0.1 | 0.1014 | 101.40 ± 3.8 | 0.1039 | 103.90 ± 4.2 | 0.0992 | 99.2 ± 3.7 | |
1 | 1.0022 | 100.22 ± 3.5 | 0.9712 | 97.12 ± 3.9 | 1.0187 | 101.87 ± 4.0 | |
PCB 138 | 0 | nd | nd | nd | nd | 0.17 | nd |
0.1 | 0.0962 | 96.20 ± 4.3 | 0.0934 | 93.40 ± 3.7 | 0.2659 | 95.90 ± 3.8 | |
1 | 0.9429 | 94.29 ± 3.8 | 0.9853 | 98.53 ± 4.2 | 1.1432 | 97.32 ± 4.5 | |
PCB 153 | 0 | nd | nd | nd | nd | nd | nd |
0.1 | 0.1028 | 102.80 ± 3.5 | 0.0986 | 98.60 ± 4.3 | 0.0977 | 97.70 ± 4.1 | |
1 | 0.9636 | 96.36 ± 4.1 | 1.0070 | 100.70 ± 3.9 | 1.0138 | 101.38 ± 3.8 | |
PCB 180 | 0 | nd | nd | nd | nd | nd | nd |
0.1 | 0.0996 | 99.60 ± 3.5 | 0.1012 | 101.20 ± 3.1 | 0.0981 | 98.1 ± 3.7 | |
1 | 0.9532 | 95.32 ± 3.1 | 1.0034 | 100.34 ± 3.6 | 0.9682 | 96.82 ± 3.2 |
PCB | Structure | Retention Time (min) | Selected Ions (m/z) |
---|---|---|---|
PCB 28 | 6.382 | 255.8 *, 185.9, 149.9, 257.8 | |
PCB 52 | 6.795 | 291.8 *, 219.8, 254.8, 183.9 | |
PCB 101 | 8.072 | 325.8 *, 253.9, 183.8, 290.8 | |
PCB 118 | 9.346 | 325.8 *, 253.8, 183.9, 323.8 | |
PCB 153 | 9.863 | 359.8 *, 289.8, 324.9, 361.8 | |
PCB 138 | 10.632 | 359.7 *, 289.8, 324.7, 144.9 | |
PCB 180 | 12.725 | 393.7 *, 323.7, 253.9, 161.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Zhang, S.; Li, X. A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples. Molecules 2024, 29, 3480. https://doi.org/10.3390/molecules29153480
Peng C, Zhang S, Li X. A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples. Molecules. 2024; 29(15):3480. https://doi.org/10.3390/molecules29153480
Chicago/Turabian StylePeng, Chunlong, Shuochen Zhang, and Xin Li. 2024. "A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples" Molecules 29, no. 15: 3480. https://doi.org/10.3390/molecules29153480
APA StylePeng, C., Zhang, S., & Li, X. (2024). A Novel DLLME Method Involving a Solidifying Hydrophobic Deep Eutectic Solvent Using Hydrophilic Deep Eutectic Solvent as the Dispersant for the Determination of Polychlorinated Biphenyls in Water Samples. Molecules, 29(15), 3480. https://doi.org/10.3390/molecules29153480