Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Matrix-Isolated IR Spectra of 5-Aminophenyl-Tetrazoles
2.2. Photogeneration and Spectroscopic Characterization of C-(4-Aminophenyl)-Nitrilimine
2.3. Photogeneration and Spectroscopic Characterization of C-(3-Aminophenyl)-Nitrilimine
2.4. Stability of the Bond-Shift Isomers and Their Attempted Interconversion
2.5. Effect of the Position and Nature of the Phenyl Substitution on the Structure of C-Phenyl-Nitrilimines
3. Methods
3.1. Experimental Methods
3.2. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huisgen, R.; Seidel, M.; Sauer, J.; McFarland, J.; Wallbillich, G. Communications: The Formation of Nitrile Imines in the Thermal Breakdown of 2,5-Disubstituted Tetrazoles. J. Org. Chem. 1959, 24, 892–893. [Google Scholar] [CrossRef]
- Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Bertrand, G.; Wentrup, C. Nitrile Imines: From Matrix Characterization to Stable Compounds. Angew. Chem. Int. Ed. Engl. 1994, 33, 527–545. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598. [Google Scholar] [CrossRef]
- Huisgen, R. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed. Engl. 1963, 2, 633–645. [Google Scholar] [CrossRef]
- Jamieson, C.; Livingstone, K. The Nitrile Imine 1,3-Dipole: Properties, Reactivity and Applications; Springer: Cham, Swirzerland, 2020. [Google Scholar]
- Molteni, G.; Ponti, A. The Nitrilimine–Alkene Cycloaddition Regioselectivity Rationalized by Density Functional Theory Reactivity Indices. Molecules 2017, 22, 202. [Google Scholar] [CrossRef] [PubMed]
- Stille, J.K.; Harris, F.W. Polymers from 1,3-dipole addition reactions: The nitrilimine dipole from acid hydrazide chlorides. J. Polym. Sci. Part A Polym. Chem. 1968, 6, 2317–2330. [Google Scholar] [CrossRef]
- Shawali, A.S. Reactions of heterocyclic compounds with nitrilimines and their precursors. Chem. Rev. 1993, 93, 2731–2777. [Google Scholar] [CrossRef]
- An, P.; Lewandowski, T.M.; Erbay, T.G.; Liu, P.; Lin, Q. Sterically Shielded, Stabilized Nitrile Imine for Rapid Bioorthogonal Protein Labeling in Live Cells. J. Am. Chem. Soc. 2018, 140, 4860–4868. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Cristiano, M.L.S.; Gómez-Zavaglia, A.; Reva, I.; Fausto, R. Genesis of rare molecules using light-induced reactions of matrix-isolated tetrazoles. J. Photochem. Photobiol., C 2014, 18, 71–90. [Google Scholar] [CrossRef]
- Lucero, P.L.; Peláez, W.J.; Riedl, Z.; Hajós, G.; Moyano, E.L.; Yranzo, G.I. Flash vacuum pyrolysis of azolylacroleins and azolylbutadienes. Tetrahedron 2012, 68, 1299–1305. [Google Scholar] [CrossRef]
- Pagacz-Kostrzewa, M.; Mucha, M.; Weselski, M.; Wierzejewska, M. Conformational properties and photochemistry of new allyl tetrazoles: Matrix isolation FTIR and computational approach. J. Photochem. Photobiol. A 2013, 251, 118–127. [Google Scholar] [CrossRef]
- Wentrup, C. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. Chem. Rev. 2017, 117, 4562–4623. [Google Scholar] [CrossRef] [PubMed]
- Baskir, E.G.; Platonov, D.N.; Tomilov, Y.V.; Nefedov, O.M. Infrared-spectroscopic study of amino-substituted nitrilimines and their photochemical transformations in an argon matrix. Mendeleev Commun. 2014, 24, 197–200. [Google Scholar] [CrossRef]
- Bégué, D.; Qiao, G.G.; Wentrup, C. Nitrile Imines: Matrix Isolation, IR Spectra, Structures, and Rearrangement to Carbodiimides. J. Am. Chem. Soc. 2012, 134, 5339–5350. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.A.; Nunes, C.M.; Lopes Jesus, A.J.; Fausto, R. The meta and para OH Substitution Effect on C-Phenyl-Nitrilimine Bond-Shift Isomers. Eur. J. Org. Chem. 2023, 26, e202300310. [Google Scholar] [CrossRef]
- Nunes, C.M.; Reva, I.; Fausto, R.; Bégué, D.; Wentrup, C. Bond-shift isomers: The co-existence of allenic and propargylic phenylnitrile imines. Chem. Commun. 2015, 51, 14712–14715. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.M.; Reva, I.; Rosado, M.T.S.; Fausto, R. The Quest for Carbenic Nitrile Imines: Experimental and Computational Characterization of C-Amino Nitrile Imine. Eur. J. Org. Chem. 2015, 2015, 7484–7493. [Google Scholar] [CrossRef]
- Nunes, C.M.; Araujo-Andrade, C.; Fausto, R.; Reva, I. Generation and Characterization of a 4π-Electron Three-Membered Ring 1H-Diazirine: An Elusive Intermediate in Nitrile Imine–Carbodiimide Isomerization. J. Org. Chem. 2014, 79, 3641–3646. [Google Scholar] [CrossRef]
- Bégué, D.; Wentrup, C. Carbenic Nitrile Imines: Properties and Reactivity. J. Org. Chem. 2014, 79, 1418–1426. [Google Scholar] [CrossRef]
- Muchall, H.M. Computational Insight into the Carbenic Character of Nitrilimines from a Reactivity Perspective. J. Phys. Chem. A 2011, 115, 13694–13705. [Google Scholar] [CrossRef]
- Herges, R. Organizing Principle of Complex Reactions and Theory of Coarctate Transition States. Angew. Chem. Int. Ed. Engl. 1994, 33, 255–276. [Google Scholar] [CrossRef]
- Maltsev, A.; Bally, T.; Tsao, M.-L.; Platz, M.S.; Kuhn, A.; Vosswinkel, M.; Wentrup, C. The Rearrangements of Naphthylnitrenes: UV/Vis and IR Spectra of Azirines, Cyclic Ketenimines, and Cyclic Nitrile Ylides. J. Am. Chem. Soc. 2004, 126, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Q.; Feng, R.; Zeng, X.; Wentrup, C. Photolysis and Pyrolysis of Phenyltetrazoles: Formation of Phenylcarbodiimide, N-Phenylnitrile Imine, Phenylnitrene, Indazole, and Fulvenallene. Eur. J. Org. Chem. 2019, 2019, 6945–6950. [Google Scholar] [CrossRef]
- Bugalho, S.C.S.; Maçôas, E.M.S.; Cristiano, M.L.S.; Fausto, R. Low temperature matrix-isolation and solid state vibrational spectra of tetrazole. Phys. Chem. Chem. Phys. 2001, 3, 3541–3547. [Google Scholar] [CrossRef]
- Lopes Jesus, A.J.; Rosado, M.T.S.; Reva, I.; Fausto, R.; Eusébio, M.E.; Redinha, J.S. Conformational Study of Monomeric 2,3-Butanediols by Matrix-Isolation Infrared Spectroscopy and DFT Calculations. J. Phys. Chem. A 2006, 110, 4169–4179. [Google Scholar] [CrossRef] [PubMed]
- Rosado, M.T.S.; Lopes Jesus, A.J.; Reva, I.D.; Fausto, R.; Redinha, J.S. Conformational Cooling Dynamics in Matrix-Isolated 1,3-Butanediol. J. Phys. Chem. A 2009, 113, 7499–7507. [Google Scholar] [CrossRef]
- Barnes, A.J. Matrix isolation vibrational spectroscopy as a tool for studying conformational isomerism. J. Mol. Struct. 1984, 113, 161–174. [Google Scholar] [CrossRef]
- Jesus, A.J.L.; Rosado, M.T.S.; Reva, I.; Fausto, R.; Eusébio, M.E.S.; Redinha, J.S. Structure of Isolated 1,4-Butanediol: Combination of MP2 Calculations, NBO Analysis, and Matrix-Isolation Infrared Spectroscopy. J. Phys. Chem. A 2008, 112, 4669–4678. [Google Scholar] [CrossRef] [PubMed]
- Elpern, B.; Nachod, F.C. Absorption Spectra and Structure of Some Tetrazoles. J. Am. Chem. Soc. 1950, 72, 3379–3382. [Google Scholar] [CrossRef]
- Maier, G.; Eckwert, J.; Bothur, A.; Reisenauer, H.P.; Schmidt, C. Photochemical Fragmentation of Unsubstituted Tetrazole, 1,2,3-Triazole, and 1,2,4-Triazole: First Matrix-Spectroscopic Identification of Nitrilimine HCNNH. Liebigs Annalen 1996, 1996, 1041–1053. [Google Scholar] [CrossRef]
- Bégué, D.; Dargelos, A.; Wentrup, C. Aryl Nitrile Imines and Diazo Compounds. Formation of Indazole, Pyridine N-Imine, and 2-Pyridyldiazomethane from Tetrazoles. J. Org. Chem. 2020, 85, 7952–7958. [Google Scholar] [CrossRef] [PubMed]
- Bégué, D.; Santos-Silva, H.; Dargelos, A.; Wentrup, C. Imidoylnitrenes R′C(═NR)–N, Nitrile Imines, 1H-Diazirines, and Carbodiimides: Interconversions and Rearrangements, Structures, and Energies at DFT and CASPT2 Levels of Theory. J. Phys. Chem. A 2017, 121, 8227–8235. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.; Fausto, R.; Cristiano, M.L.S. Photochemistry of 1- and 2-Methyl-5-aminotetrazoles: Structural Effects on Reaction Pathways. J. Org. Chem. 2016, 81, 11656–11663. [Google Scholar] [CrossRef] [PubMed]
- Lopes Jesus, A.J.; Nunes, C.M.; Fausto, R.; Reva, I. Conformational control over an aldehyde fragment by selective vibrational excitation of interchangeable remote antennas. Chem. Commun. 2018, 54, 4778–4781. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.M.; Pereira, N.A.M.; Viegas, L.P.; Pinho e Melo, T.M.V.D.; Fausto, R. Inducing molecular reactions by selective vibrational excitation of a remote antenna with near-infrared light. Chem. Commun. 2021, 57, 9570–9573. [Google Scholar] [CrossRef] [PubMed]
- Lopes Jesus, A.J.; Nunes, C.M.; Reva, I.; Pinto, S.M.V.; Fausto, R. Effects of Entangled IR Radiation and Tunneling on the Conformational Interconversion of 2-Cyanophenol. J. Phys. Chem. A 2019, 123, 4396–4405. [Google Scholar] [CrossRef]
- Yoshida, K.-i.; Iiba, E.; Nozaki, Y.; Hirai, K.; Takahashi, Y.; Tomioka, H.; Lin, C.-T.; Gaspar, P.P. Di(9-anthryl)carbene Revisited. Product Analysis and Spectroscopic Studies. Bull. Chem. Soc. Jpn. 2004, 77, 1509–1522. [Google Scholar] [CrossRef]
- DePinto, J.T.; McMahon, R.J. Structure and rearrangements of 1,3-diphenylpropynylidene. J. Am. Chem. Soc. 1993, 115, 12573–12574. [Google Scholar] [CrossRef]
- Carra, C.; Nussbaum, R.; Bally, T. Experimental and Theoretical Study of 2,6-Difluorophenylnitrene, Its Radical Cation, and Their Rearrangement Products in Argon Matrices. ChemPhysChem 2006, 7, 1268–1275. [Google Scholar] [CrossRef]
- Reva, I.D.; Stepanian, S.G.; Adamowicz, L.; Fausto, R. Missing conformers. Comparative study of conformational cooling in cyanoacetic acid and methyl cyanoacetate isolated in low temperature inert gas matrixes. Chem. Phys. Lett. 2003, 374, 631–638. [Google Scholar] [CrossRef]
- Sponsler, M.B.; Jain, R.; Coms, F.D.; Dougherty, D.A. Matrix-isolation decay kinetics of triplet cyclobutanediyls. Observation of both Arrhenius behavior and heavy-atom tunneling in carbon-carbon bond-forming reactions. J. Am. Chem. Soc. 1989, 111, 2240–2252. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acc. 1977, 44, 129. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Rablen, P.R. Atomic Charges. J. Org. Chem. 2018, 83, 15463–15469. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution. J. Chem. Phys. 2014, 141, 194109. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Quantifying Reactivity for Electrophilic Aromatic Substitution Reactions with Hirshfeld Charge. J. Phys. Chem. A 2015, 119, 3107–3111. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.; Cheshmedzhieva, D.; Ilieva, S.; Galabov, B. Atomic Charges in Describing Properties of Aromatic Molecules. J. Org. Chem. 2019, 84, 1908–1915. [Google Scholar] [CrossRef]
- Frisch, M.E.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. GAUSSIAN 16; Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Teixeira, F.; Cordeiro, M.N.D.S. Improving Vibrational Mode Interpretation Using Bayesian Regression. J. Chem. Theory Comput. 2019, 15, 456–470. [Google Scholar] [CrossRef]
- Zhurko, G.A.C. Chemcraft, Version 1.8. 2016. Available online: http://www.chemcraftprog.com (accessed on June 2024).
- Barone, V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2004, 122, 14108. [Google Scholar] [CrossRef] [PubMed]
- Bloino, J.; Barone, V. A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies. J. Chem. Phys. 2012, 136, 124108. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar] [CrossRef]
5-(4-aminophenyl)-tetrazole 1p | ||||
Isomer | ||||
1p″ | 1p′ | |||
ΔG (380 K) | 0.00 | 6.13 | ||
Pop. | 92.2 | 7.8 | ||
5-(3-aminophenyl)-tetrazole 1m | ||||
Isomer | ||||
1m″-a | 1m″-s | 1m′-a | 1m′-s | |
ΔG (380 K) | 0.00 | 0.97 | 6.91 | 10.79 |
Pop. | 57.1 | 38.6 | 3.5 | 0.7 |
Ar Matrix a | Computed b | Vibrational Assignment c | |
---|---|---|---|
ν̃ | Ath | ||
3523 | 3502.6 | 24.3 | νas(NH2) |
3432/3428 | 3404.5 | 57.1 | νs(NH2) |
n.o. | 3329.8 | 1.2 | ν(NH) |
2098/2059 | 2077.9 | 333.3 | νas(CNN) |
1621 | 1631.0 | 241.1 | δ(NH2) |
1603 | 1610.1 | 88.5 | ν(CC)ph |
1576 | 1564.4 | 9.8 | ν(CC)ph |
1522 | 1515.0 | 34.7 | ν(CNA) − ν(CCN); ν(CC)ph; δ(CH) |
1367 | 1380.4 | 117.5 | ν(NN) − ν(CCN) |
1300 | 1292.5 | 83.5 | ν(CNA); ν(CC)ph |
1290 | 1287.5 | 12.4 | ν(CC)ph |
1259 | 1258.9 | 423.2 | δ(NH) |
1179 | 1178.5 | 84.9 | δ(CH) |
1124 | 1127.0 | 14.8 | δ(CH) |
1098 | 1098.5 | 28.9 | ν(NN) + ν(CCN) |
n.o. | 1046.9 | 7.4 | ρ(NH2) |
831 | 829.8 | 15.5 | ν(CC)ph |
831 | 823.4 | 45.0 | γ(CH)ph; γ(C)ph |
Ar Matrix a | Computed b | Vibrational Assignment c | |
---|---|---|---|
ν̃ | Ath | ||
3487 | 3489.2/3490.8 | 19.5/19.4 | νas(NH2) |
n.o. | 3395.3/3396.6 | 29.2/29.8 | νs(NH2) |
n.o. | 3240.7/3277.1 | 5.1/31.5 | ν(NH) |
2238 | 2236.1 | 967.0 | νas(CNN), 2mP |
2067 | 2091.1 | 481.6 | νas(CNN), 2mA |
1618 | 1630.5/1629.9 | 171.3/157.1 | δ(NH2) |
1599 | 1605.4/1602.0 | 88.6/148.9 | ν(CC)ph |
1586 | 1579.4/1576.9 | 36.0/50.5 | ν(CC)ph |
1490 | 1491.4/1492.4 | 2.2/18.9 | ν(CC)ph; δ(CH) |
n.o. | 1454.1/1447.7 | 38.8/27.5 | ν(CC)ph |
1366 | 1375.4/1382.6 | 77.5/63.8 | ν(NN) − ν(CCN) |
n.o. | 1321.9/1323.9 | 10.8/4.5 | δ(CH); ν(CC)ph |
1306 | 1302.0/1297.2 | 10.4/9.2 | ν(CC)ph; ν(CNA) |
1279 | 1270.4/1273.6 | 172.4/85.5 | ν(CNA); δ(NH); δ(CH) |
1246/1237 | 1239.9 | 234.3 | δ(NH), 2mA |
1221 | 1220.4 | 229.7 | δ(NH), 2mP |
Allenic-Type Structures | |||||
---|---|---|---|---|---|
C-Phenyl-Nitrilimine | ortho-NH2 | meta-NH2(2mA) | meta-NO2 | para-NH2(2p) | |
Geometric parameters | |||||
CRCN (Å) | 1.44 | 1.44 | 1.44 | 1.43 | 1.43 |
CNNC (Å) | 1.18 | 1.19 | 1.18 | 1.18 | 1.19 |
NCNH (Å) | 1.25 | 1.25 | 1.25 | 1.24 | 1.25 |
CRCNNC (º) | 142.13 | 142.33 | 142.45 | 144.93 | 143.04 |
CNNCNH (º) | 169.82 | 169.40 | 169.87 | 170.40 | 169.39 |
CRCNNHH (º) | −99.47 | −98.22 | −99.46 | −104.16 | −97.61 |
Hirshfeld charges | |||||
CR | 0.002 | −0.025 | 0.001 | 0.013 | −0.019 |
CN | −0.019 | −0.023 | −0.018 | −0.004 | −0.025 |
NC | 0.049 | 0.044 | 0.048 | 0.058 | 0.039 |
NH | −0.211 | −0.212 | −0.215 | −0.198 | −0.224 |
Propargylic-Type Structures | |||||
C-Phenyl-Nitrilimine | ortho-NO2 | meta-NH2(2mP) | meta-NO2 | para-NO2 | |
Geometric parameters | |||||
CRCN (Å) | 1.41 | 1.40 | 1.41 | 1.41 | 1.41 |
CNNC (Å) | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
NCNH (Å) | 1.26 | 1.25 | 1.26 | 1.25 | 1.25 |
CRCNNC (º) | 179.85 | 170.92 | 178.41 | 179.80 | 179.92 |
CNNCNH (º) | 171.76 | 174.49 | 171.76 | 171.70 | 171.69 |
CRCNNHH (º) | 180.00 | 180.00 | −161.23 | 180.00 | 180.00 |
Hirshfeld charges | |||||
CR | 0.007 | 0.016 | 0.006 | 0.015 | 0.020 |
CN | 0.043 | 0.046 | 0.044 | 0.044 | 0.050 |
NC | 0.046 | 0.060 | 0.044 | 0.055 | 0.057 |
NH | −0.239 | −0.202 | −0.244 | −0.219 | −0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes Jesus, A.J.; Nunes, C.M.; Ferreira, G.A.; Keyvan, K.; Fausto, R. Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations. Molecules 2024, 29, 3497. https://doi.org/10.3390/molecules29153497
Lopes Jesus AJ, Nunes CM, Ferreira GA, Keyvan K, Fausto R. Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations. Molecules. 2024; 29(15):3497. https://doi.org/10.3390/molecules29153497
Chicago/Turabian StyleLopes Jesus, A. J., Cláudio M. Nunes, Gil A. Ferreira, Kiarash Keyvan, and R. Fausto. 2024. "Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations" Molecules 29, no. 15: 3497. https://doi.org/10.3390/molecules29153497
APA StyleLopes Jesus, A. J., Nunes, C. M., Ferreira, G. A., Keyvan, K., & Fausto, R. (2024). Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations. Molecules, 29(15), 3497. https://doi.org/10.3390/molecules29153497