Heterogeneous Photocatalytic Degradation of Selected Pharmaceuticals and Personal Care Products (PPCPs) Using Tungsten Doped TiO2: Effect of the Tungsten Precursors and Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Photocatalytic Degradation of TC and CIP
2.3. Mechanism
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Catalyst Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007, 41, 4526–4534. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Dwivedi, A.D.; Lee, W.-N.; Zhao, X.; Liu, W.; Sillanpää, M.; Zhao, D.; Huang, C.-H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano 2018, 5, 27–47. [Google Scholar] [CrossRef]
- Kumar, A.; Khan, M.; He, J.; Lo, I.M.C. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review. Water Res. 2020, 170, 115356. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khan, M.; Fang, L.; Lo, I.M.C. Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs. J. Hazard. Mater. 2019, 370, 108–116. [Google Scholar] [CrossRef]
- Fung, C.S.L.; Khan, M.; Kumar, A.; Lo, I.M.C. Visible-light-driven photocatalytic removal of PPCPs using magnetically separable bismuth oxybromo-iodide solid solutions: Mechanisms, pathways, and reusability in real sewage. Sep. Purif. Technol. 2019, 216, 102–114. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef]
- Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K.S.; Ravikumar, V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A Mol. Biomol. Spectrosc. 2014, 121, 746–750. [Google Scholar] [CrossRef]
- Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Lett. 2019, 4, 1687–1709. [Google Scholar] [CrossRef]
- Ramos-Delgado, N.A.; Hinojosa-Reyes, L.; Guzman-Mar, I.L.; Gracia-Pinilla, M.A.; Hernández-Ramírez, A. Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal. Today 2013, 209, 35–40. [Google Scholar] [CrossRef]
- Feng, X.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: Synergistic effect and intermediates analysis. J. Hazard. Mater. 2018, 351, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luo, Z.; Li, Y.; Wang, W.; Li, J.; Li, J.; Ao, Y.; He, J.; Sharma, V.K.; Wang, J. Morphology- and Phase-Controlled Synthesis of Visible-Light-Activated S-doped TiO2 with Tunable S4+/S6+ Ratio. Chem. Eng. J. 2020, 402, 125549. [Google Scholar] [CrossRef]
- Yoshida, T.; Niimi, S.; Yamamoto, M.; Nomoto, T.; Yagi, S. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis. J. Colloid. Interface Sci. 2015, 447, 278–281. [Google Scholar] [CrossRef]
- Ma, J.; He, H.; Liu, F. Effect of Fe on the photocatalytic removal of NO over visible light responsive Fe/TiO2 catalysts. Appl. Catal. B Environ. 2015, 179, 21–28. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, X.; He, F.; Liu, S. Simple preparation of uniformly distributed mesoporous Cr/TiO2 microspheres for low-temperature catalytic combustion of chlorobenzene. Chem. Eng. J. 2019, 372, 107–117. [Google Scholar] [CrossRef]
- Hongkailers, S.; Jing, Y.; Wang, Y.; Hinchiranan, N.; Yan, N. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem 2021, 14, 4330–4339. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, H.; Xu, Y. Improved Photocatalytic Activity of TiO2 on the Addition of CuWO4. J. Phys. Chem. C 2015, 119, 5946–5953. [Google Scholar] [CrossRef]
- Riboni, F.; Bettini, L.G.; Bahnemann, D.W.; Selli, E. WO3–TiO2 vs. TiO2 photocatalysts: Effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catal. Today 2013, 209, 28–34. [Google Scholar] [CrossRef]
- Tian, H.; Ma, J.; Li, K.; Li, J. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Mater. Chem. Phys. 2008, 112, 47–51. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Fabrication of vertical orthorhombic/hexagonal tungsten oxide phase junction with high photocatalytic performance. Appl. Catal. B Environ. 2017, 207, 207–217. [Google Scholar] [CrossRef]
- Anithaa, A.C.; Asokan, K.; Sekar, C. Low energy nitrogen ion beam implanted tungsten trioxide thin films modified indium tin oxide electrode based acetylcholine sensor. J. Taiwan Inst. Chem. Eng. 2018, 84, 11–18. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Song, G.; Hong, J.; Van, T.K.; Pawar, A.U.; Kim, D.Y.; Kim, C.W.; Haider, Z.; Kang, Y.S. Facile Fabrication of WO3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting. Cryst. Growth Des. 2014, 14, 6057–6066. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Mahadik, M.A.; Mathe, V.L.; Bhosale, C.H. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan Inst. Chem. Eng. 2018, 85, 273–281. [Google Scholar] [CrossRef]
- Sathasivam, S.; Bhachu, D.S.; Lu, Y.; Chadwick, N.; Althabaiti, S.A.; Alyoubi, A.O.; Basahel, S.N.; Carmalt, C.J.; Parkin, I.P. Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Sci. Rep. 2015, 5, 10952. [Google Scholar] [CrossRef]
- Makwana, N.M.; Quesada-Cabrera, R.; Parkin, I.P.; McMillan, P.F.; Mills, A.; Darr, J.A. A simple and low-cost method for the preparation of self-supported TiO2–WO3 ceramic heterojunction wafers. J. Mater. Chem. A 2014, 2, 17602–17608. [Google Scholar] [CrossRef]
- Akurati, K.K.; Vital, A.; Dellemann, J.-P.; Michalow, K.; Graule, T.; Ferri, D.; Baiker, A. Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Appl. Catal. B Environ. 2008, 79, 53–62. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Yue, G.; Lu, X.; Hu, Z.; Zhu, Y. W-doped TiO2 photoanode for high performance perovskite solar cell. Electrochim. Acta 2016, 195, 143–149. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, N.; Wang, H.; Lu, N.; Shang, K.; Li, J.; Wu, Y. Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: Mechanism and degradation pathway. J. Hazard. Mater. 2019, 371, 666–676. [Google Scholar] [CrossRef]
- Azadi, S.; Karimi-Jashni, A.; Javadpour, S. Photocatalytic Treatment of Landfill Leachate Using W-Doped TiO2 Nanoparticles. J. Environ. Eng. 2017, 143, 04017049. [Google Scholar] [CrossRef]
- Sotelo-Vazquez, C.; Quesada-Cabrera, R.; Ling, M.; Scanlon, D.O.; Kafizas, A.; Thakur, P.K.; Lee, T.L.; Taylor, A.; Watson, G.W.; Palgrave, R.G.; et al. Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. Adv. Funct. Mater. 2017, 27, 1605413. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Yang, P.; Jiang, L.; Wang, W.; He, J.; Chen, Y.; Wang, J. Tungstate doped TiO2-SiO2 aerogels for preferential photocatalytic degradation of methamphetamine in seizure samples containing caffeine under simulated sunlight. Catal. Commun. 2020, 145, 106121. [Google Scholar] [CrossRef]
- Wu, J.; Lü, X.; Zhang, L.; Huang, F.; Xu, F. Dielectric Constant Controlled Solvothermal Synthesis of a TiO2 Photocatalyst with Tunable Crystallinity: A Strategy for Solvent Selection. Eur. J. Inorg. Chem. 2009, 2009, 2789–2795. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, S.; Verma, N.K.; Singh, P. Role of pH on the photocatalytic activity of TiO2 tailored by W/T mole ratio. J. Mater. Sci. Mater. Electron. 2018, 29, 16120–16135. [Google Scholar] [CrossRef]
- Shnain, Z.Y.; Toma, M.A.; Abdulhussein, B.A.; Saleh, N.J.; Ibrahim, M.; Manuel, N.; Mahmood, A. The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method. Bull. Chem. React. Eng. Catal. 2022, 17, 46–52. [Google Scholar] [CrossRef]
- Ungula, J.; Dejene, B.F. Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Phys. B Condens. Matter 2016, 480, 26–30. [Google Scholar] [CrossRef]
- Lu, X.; Li, M.; Hoang, S.; Suib, S.L.; Gao, P.-X. Solvent effects on the heterogeneous growth of TiO2 nanostructure arrays by solvothermal synthesis. Catal. Today 2021, 360, 275–283. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwak, S.-Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A Gen. 2007, 323, 110–118. [Google Scholar] [CrossRef]
- Shifu, C.; Lei, C.; Shen, G.; Gengyu, C. The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powder Technol. 2005, 160, 198–202. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Dai, W.-L.; Li, H.; Fan, K. One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl. Catal. B Environ. 2008, 82, 233–243. [Google Scholar] [CrossRef]
- Smitha, V.S.; Manjumol, K.A.; Baiju, K.V.; Ghosh, S.; Perumal, P.; Warrier, K.G.K. Sol–gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J. Sol-Gel Sci. Technol. 2010, 54, 203–211. [Google Scholar] [CrossRef]
- Tae Kwon, Y.; Yong Song, K.; In Lee, W.; Jin Choi, G.; Rag Do, Y. Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction. J. Catal. 2000, 191, 192–199. [Google Scholar] [CrossRef]
- Yu, C.; Yang, K.; Shu, Q.; Yu, J.C.; Cao, F.; Li, X. Preparation of WO3/ZnO Composite Photocatalyst and Its Photocatalytic Performance. Chin. J. Catal. 2011, 32, 555–565. [Google Scholar] [CrossRef]
- Leghari, S.A.K.; Sajjad, S.; Chen, F.; Zhang, J. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem. Eng. J. 2011, 166, 906–915. [Google Scholar] [CrossRef]
- Singaram, B.; Jeyaram, J.; Rajendran, R.; Arumugam, P.; Varadharajan, K. Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation. Ionics 2018, 25, 773–784. [Google Scholar] [CrossRef]
- Bai, S.; Liu, H.; Sun, J.; Tian, Y.; Chen, S.; Song, J.; Luo, R.; Li, D.; Chen, A.; Liu, C.-C. Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Appl. Surf. Sci. 2015, 338, 61–68. [Google Scholar] [CrossRef]
- Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Cho, E.-C.; Chang-Jian, C.-W.; Zheng, J.-H.; Huang, J.-H.; Lee, K.-C.; Ho, B.-C.; Hsiao, Y.-S. Microwave-assisted synthesis of TiO2/WS2 heterojunctions with enhanced photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2018, 91, 489–498. [Google Scholar] [CrossRef]
- Ullah, I.; Haider, A.; Khalid, N.; Ali, S.; Ahmed, S.; Khan, Y.; Ahmed, N.; Zubair, M. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 150–157. [Google Scholar] [CrossRef]
- Sajjad, A.K.L.; Shamaila, S.; Zhang, J. Tungstate/titanate composite nanorod as an efficient visible light photo catalyst. J. Hazard. Mater. 2012, 235–236, 307–315. [Google Scholar]
- Zhou, P.; Xu, Q.; Li, H.; Wang, Y.; Yan, B.; Zhou, Y.; Chen, J.; Zhang, J.; Wang, K. Fabrication of Two-Dimensional Lateral Heterostructures of WS2/WO3⋅H2O Through Selective Oxidation of Monolayer WS2. Angew. Chem. Int. Ed. 2015, 54, 15226–15230. [Google Scholar] [CrossRef]
- Choi, T.; Kim, J.-S.; Kim, J.H. Influence of alkoxide structures on formation of TiO2/WO3 heterojunctions for photocatalytic decomposition of organic compounds. Adv. Powder Technol. 2016, 27, 2061–2065. [Google Scholar] [CrossRef]
- Zhao, L.; Xi, X.; Liu, Y.; Ma, L.; Nie, Z. Growth mechanism and visible-light-driven photocatalysis of organic solvent dependent WO3 and nonstoichiometric WO3-x nanostructures. J. Taiwan Inst. Chem. Eng. 2020, 115, 339–347. [Google Scholar] [CrossRef]
- Kang, N.; Xu, D.; Shi, W. Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC). Chin. J. Chem. Eng. 2019, 27, 3053–3059. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, X.; Li, R.; Xie, Y.; Tang, Q.; Ren, B. Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: For TC degradation and antimicrobial activity evaluation. Opt. Mater. 2020, 108, 110170. [Google Scholar] [CrossRef]
- Tang, T.; Yin, Z.; Chen, J.; Zhang, S.; Sheng, W.; Wei, W.; Xiao, Y.; Shi, Q.; Cao, S. Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light. Chem. Eng. J. 2021, 417, 128058. [Google Scholar] [CrossRef]
- Sarafraz, M.; Sadeghi, M.; Yazdanbakhsh, A.; Amini, M.M.; Sadani, M.; Eslami, A. Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment. Process Saf. Environ. Prot. 2020, 137, 261–272. [Google Scholar] [CrossRef]
- Shi, J.-W.; Wang, Z.; He, C.; Li, G.; Niu, C. Carbon-doped titania flakes with an octahedral bipyramid skeleton structure for the visible-light photocatalytic mineralization of ciprofloxacin. RSC Adv. 2015, 5, 98361–98365. [Google Scholar] [CrossRef]
- Suwannaruang, T.; Hildebrand, J.P.; Taffa, D.H.; Wark, M.; Kamonsuangkasem, K.; Chirawatkul, P.; Wantala, K. Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture. J. Photochem. Photobiol. A Chem. 2020, 391, 112371. [Google Scholar] [CrossRef]
- Kanade, K.G.; Kale, B.B.; Aiyer, R.C.; Das, B.K. Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater. Res. Bull. 2006, 41, 590–600. [Google Scholar] [CrossRef]
- Byrne, C.; Dervin, S.; Hermosilla, D.; Merayo, N.; Blanco, Á.; Hinder, S.; Harb, M.; Dionysiou, D.D.; Pillai, S.C. Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites. Catal. Today 2021, 380, 199–208. [Google Scholar] [CrossRef]
- May-Lozano, M.; Ramos-Reyes, G.M.; López-Medina, R.; Martínez-Delgadillo, S.A.; Flores-Moreno, J.; Hernández-Pérez, I. Effect of the Amount of Water in the Synthesis of B-TiO2: Orange II Photodegradation. Int. J. Photochem. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Yang, G.; Gao, Q.; Yang, S.; Yin, S.; Cai, X.; Yu, X.; Zhang, S.; Fang, Y. Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 2020, 239, 124831. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Oba, S.N.; Aniagor, C.O.; Adeniyi, A.G.; Ighalo, J.O. Adsorption of ciprofloxacin from water: A comprehensive review. J. Ind. Eng. Chem. 2021, 93, 57–77. [Google Scholar] [CrossRef]
- Penafiel, M.E.; Matesanz, J.M.; Vanegas, E.; Bermejo, D.; Mosteo, R.; Ormad, M.P. Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci. Total Environ. 2021, 750, 141498. [Google Scholar] [CrossRef]
- Xie, P.; Chen, C.; Zhang, C.; Su, G.; Ren, N.; Ho, S.H. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res. 2020, 172, 115475. [Google Scholar] [CrossRef] [PubMed]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022, 287 Pt 2, 132081. [Google Scholar] [CrossRef] [PubMed]
- Eghbali, P.; Hassani, A.; Sündü, B.; Metin, Ö. Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance. J. Mol. Liq. 2019, 290, 111208. [Google Scholar] [CrossRef]
Samples | Average Crystalline Size (nm) | SBET (m2/g) | Band Gap Energy (eV) | Pore Volume (cm3/g) | Pore Size (A) |
---|---|---|---|---|---|
TiO2-DMF | 10.2 | 145.12 | 3.32 | 0.29 | 7.18 |
TiO2-Et | 10.8 | 143.23 | 3.32 | 0.33 | 10.45 |
W1-TiO2-DMF | 8.2 | 205.60 | 3.13 | 0.22 | 34.01 |
W1-TiO2-Et | 9.6 | 202.25 | 3.17 | 0.44 | 64.94 |
W2-TiO2-DMF | 9.9 | 148.63 | 3.26 | 0.29 | 58.01 |
W2-TiO2-Et | 10.1 | 147.98 | 3.29 | 0.37 | 70.69 |
W3-TiO2-DMF | 6.4 | 350.39 | 3.24 | 0.37 | 37.08 |
W3-TiO2-Et | 7.9 | 200.82 | 3.21 | 0.54 | 58.21 |
Samples | TiO2-DMF | TiO2-Et | W1-TiO2-DMF | W1-TiO2-Et | W2-TiO2-DMF | W2-TiO2-Et | W3-TiO2-DMF | W3-TiO2-Et |
---|---|---|---|---|---|---|---|---|
K (min−1) | 0.0001 | 0.0002 | 0.0030 | 0.0039 | 0.0012 | 0.0014 | 0.0016 | 0.0017 |
Samples | TiO2-DMF | TiO2-Et | W1-TiO2-DMF | W1-TiO2-Et | W2-TiO2-DMF | W2-TiO2-Et | W3-TiO2-DMF | W3-TiO2-Et |
---|---|---|---|---|---|---|---|---|
K (min−1) | 0.0001 | 0.0002 | 0.0031 | 0.0044 | 0.0011 | 0.0014 | 0.0013 | 0.0016 |
Sample | Dosage (g/L) | Concentration (mg/L) | Time (min) | Removal Rate (%) | Year | Author | Reference |
---|---|---|---|---|---|---|---|
Bi/BiVO4 | 0.5 | 10 | 60 | 74.7 | 2019 | Nianjun Kang | [54] |
2D/2D BiOCl/g-C3N4 | 0.1 | 10 | 30 | 97.1 | 2020 | Yuwei Sun | [55] |
Bi2O3/Ti3+—TiO2 | 0.2 | 10 | 200 | 96.5 | 2020 | Tao Tang | [56] |
This work | 0.4 | 50 | 360 | 77.2 | 2024 | ---- | ---- |
Sample | Dosage (g/L) | Concentration (mg/L) | Time (min) | Removal Rate (%) | Year | Author | Reference |
---|---|---|---|---|---|---|---|
Ti3+/N-TiO2 | 0.43 | 0.5 | 70 | 100 | 2020 | Mansour Sarafraz | [57] |
Carbon-doped TiO2 | 1 | 50 | 360 | 35 | 2015 | Jian-Wen Shi | [58] |
Fe-N-TiO2 | 0.6 | 20 | 360 | 70 | 2020 | Totsaporn Suwannaruang | [59] |
This work | 0.4 | 50 | 360 | 80 | 2024 | ---- | ---- |
pH | W1-TiO2-DMF (mV) | W1-TiO2-Et (mV) | W2-TiO2-DMF (mV) | W2-TiO2-Et (mV) | W3-TiO2-DMF (mV) | W3-TiO2-Et (mV) |
---|---|---|---|---|---|---|
3 | 21.6 | 22.1 | 5.81 | 8.5 | 4.67 | 3.86 |
5 | 0.668 | −2.13 | −12.4 | −10.6 | −12.2 | −13.1 |
7 | −18.3 | −19.3 | −18.2 | −18.8 | −19.2 | −20.1 |
9 | −23.7 | −23.4 | −22.1 | −23.1 | −23.3 | −24.2 |
11 | −29.9 | −30 | −28.7 | −30 | −31.6 | −32.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Li, J.; Luo, F.; Yu, Y.; Yang, Y.; Li, Y. Heterogeneous Photocatalytic Degradation of Selected Pharmaceuticals and Personal Care Products (PPCPs) Using Tungsten Doped TiO2: Effect of the Tungsten Precursors and Solvents. Molecules 2024, 29, 4164. https://doi.org/10.3390/molecules29174164
Li K, Li J, Luo F, Yu Y, Yang Y, Li Y. Heterogeneous Photocatalytic Degradation of Selected Pharmaceuticals and Personal Care Products (PPCPs) Using Tungsten Doped TiO2: Effect of the Tungsten Precursors and Solvents. Molecules. 2024; 29(17):4164. https://doi.org/10.3390/molecules29174164
Chicago/Turabian StyleLi, Kunyang, Jing Li, Fengying Luo, Yuhua Yu, Yepeng Yang, and Yizhou Li. 2024. "Heterogeneous Photocatalytic Degradation of Selected Pharmaceuticals and Personal Care Products (PPCPs) Using Tungsten Doped TiO2: Effect of the Tungsten Precursors and Solvents" Molecules 29, no. 17: 4164. https://doi.org/10.3390/molecules29174164
APA StyleLi, K., Li, J., Luo, F., Yu, Y., Yang, Y., & Li, Y. (2024). Heterogeneous Photocatalytic Degradation of Selected Pharmaceuticals and Personal Care Products (PPCPs) Using Tungsten Doped TiO2: Effect of the Tungsten Precursors and Solvents. Molecules, 29(17), 4164. https://doi.org/10.3390/molecules29174164