Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of YCs and YC@dye@SiO2
2.2. Chemical Composition of YC and YC@dye@SiO2
2.2.1. 13C CP MAS NMR and 29Si CP MAS NMR Analyses of YC@dye@SiO2 Microcapsules in Solid State
2.2.2. FT-IR Analyses of YC@dye and YC@dye@SiO2
2.3. Physical Characteristics of Capsules Using TGA and Nitrogen Adsorption/Desorption Analyses
2.4. Spectrophotometric and Fluorescence Analyses of YC@dye@SiO2 Microcapsules
2.5. Optical Microscopic Fluorescence Analysis of YC@dye@SiO2 Microcapsules
2.6. Analysis of Singlet Oxygen Generation by PSF and YC@PSF@SiO2
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Preparation of Inactivated Yeast Cells in Capsule Form
3.2.2. Encapsulation of Dyes (PSF and AZ) Within YCs
3.2.3. Synthesis of YC@dye@SiO2 Microcapsules
3.3. Microscopic (AFM, SEM, TEM) Analyses of the Surface Morphology of YC and YC@dye@SiO2 Microcapsules
3.4. Microscopic Fluorescence Analysis of YC@dye@SiO2 Microcapsules
3.5. Fourier Transform Infrared (FT-IR) Measurements
3.6. Thermogravimetric Analysis
3.7. Nitrogen Adsorption–Desorption Studies
3.8. Determination of Hydrodynamic Diameter and Zeta Potential of YCs, and YC@dye@SiO2 Microcapsules
3.9. Singlet Oxygen Quantum Yields Under Light Irradiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, K.; Cha, J.; Stucky, G.D.; Morse, D.E. Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 1998, 95, 6234–6238. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Guo, J.; Kong, F.; Cao, J.; Wang, L.; Zhu, W.; Brinker, C.J. Bioinspired cell silicification: From extracellular to intracellular. J. Am. Chem. Soc. 2021, 143, 6305–6322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, K.; Zhang, H. Biomimetic Mineralization: From microscopic to macroscopic materials and their biomedical applications. ACS Appl. Bio Mater. 2023, 6, 3516–3531. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Guo, J.; Noureddine, A.; Wang, A.; Wuttke, S.; Brinker, C.J.; Zhu, W. Sol-gel-based advanced porous silica materials for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909539. [Google Scholar] [CrossRef]
- Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous silica nanoparticles in medicine-recent advances. Adv. Drug Deli. Rev. 2013, 65, 689–702. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.A.; Pack, S.P. Biomimetic and bioinspired silicifications: Recent advances for biomaterials design and applications. Acta Biomater. 2021, 120, 38–56. [Google Scholar] [CrossRef]
- Zuo, L.; Yang, Y.; Zhang, H.; Ma, Z.; Xin, Q.; Ding, C.; Li, J. Bioinspired multiscale mineralization: From fundamentals to potential applications. Macromol. Biosci. 2023, 24, e2300348. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, T.; Liu, P.; Meng, L.; Li, S.; Gou, Y.; Yang, L.; Ma, X. Biomineralization nanosilica-based organelles endow living yeast cells with non-inherent biological functions. Chem. Commun. 2020, 56, 5693–5696. [Google Scholar] [CrossRef]
- Sun, X.; Yu, X.; Cheng, F.; He, W. Cationic polymeric template-mediated preparation of silica nanocomposites. Soft Matter 2021, 17, 8995–9007. [Google Scholar] [CrossRef]
- Yuan, J.J.; Mykhaylyk, O.O.; Ryan, A.J.; Armes, S.P. Cross-Linking of cationic block copolymer micelles by silica deposition. J. Am. Chem. Soc. 2007, 129, 1717–1723. [Google Scholar] [CrossRef]
- Jia, Y.; Gray, G.M.; Hay, J.N.; Li, Y.; Unali, G.-F.; Baines, F.L.; Armes, S.P. Use of quaternised methacrylate polymers and copolymers as catalysts and structure directors for the formation of silica from silicic acid. J. Mater. Chem. 2005, 15, 2202–2209. [Google Scholar] [CrossRef]
- Laugel, N.; Hemmerle, J.; Porcel, C.; Voegel, J.-C.; Schaaf, P.; Ball, V. Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition. Langmuir 2007, 23, 3706–3711. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Park, J.H.; Cho, W.K.; Lee, H.-S.; Choi, I.S. Counteranion-directed, biomimetic control of silica nanostructures on surfaces inspired by biosilicification found in diatoms. Small 2009, 5, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Kang, S.M.; Kim, D.J.; Yang, S.H.; Choi, I.S. Formation of superhydrophobic surface by biomimetic silicification and fluorination. Langmuir 2006, 22, 11208–11213. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Choi, H.; Nguyen, D.T.; Kim, N.; Rhee, S.Y.; Han, S.Y.; Lee, H.; Choi, I.S. Bioempowerment of therapeutic living cells by single-cell surface engineering. Adv. Ther. 2023, 6, 2300037. [Google Scholar] [CrossRef]
- Patwardhan, S.V.; Clarson, S.J. Silicification and biosilicification. Silicon Chem. 2002, 1, 207–214. [Google Scholar] [CrossRef]
- Sumper, M. Biomimetic patterning of silica by long-chain polyamines. Angew. Chem. Int. Ed. Engl. 2004, 43, 2251–2254. [Google Scholar] [CrossRef]
- Sumper, M.; Lorenz, S.; Brunner, E. Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angew. Chem. Int. Ed. Engl. 2003, 49, 5192–5195. [Google Scholar] [CrossRef]
- Kröger, N.; Deutzmann, R.; Bergdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 2000, 97, 14133–14138. [Google Scholar] [CrossRef]
- Kröger, N.; Lorentz, S.; Brunner, E.; Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002, 298, 584–586. [Google Scholar] [CrossRef]
- Kröger, N.; Deutzmann, R.; Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999, 286, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.Y.; Yang, G.; Fu, C.; Liu, Y.; Zhao, C.-X. Biomimetic core-shell silica nanoparticles using a dual-functional peptide. J. Colloid Interface Sci. 2021, 581, 185–194. [Google Scholar] [CrossRef]
- Min, K.M.; Teo, K.B.; Ki, M.-R.; Jun, S.H.; Pack, S.P. Novel silica peptide, RSGH, from Equus caballus: Its unique biosilica formation under acidic conditions. Biochem. Eng. J. 2020, 153, 107389. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, I.S.; Yang, S.H. Peptide-catalyzed, bioinspired silicification for single-cell encapsulation in the imidazole-buffered system. Chem. Commun. 2015, 51, 5523–5525. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, N. One step synthesis of an amino acid derived particles poly(L-Arginine) and its biomedical application. Polym. Adv. Technol. 2022, 33, 831–842. [Google Scholar] [CrossRef]
- Kar, M.; Tiwari, N.; Tiwari, M.; Lahiri, M.; Gupta, S.S. Poly-L-arginine grafted silica mesoporous nanoparticles for enhanced cellular uptake and their application in DNA delivery and controlled drug release. Part. Part. Syst. Charact. 2013, 30, 166–179. [Google Scholar] [CrossRef]
- Patwardhan, S.V.; Mukherjee, N.; Clarson, S. The use of poly-L-Lysine to form novel silica morphologies and the role of polypeptides in biosilification. Chem. Process Eng. 2001, 11, 193–198. [Google Scholar] [CrossRef]
- Brunner, E.; Lutz, K.; Sumper, M. Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 854–857. [Google Scholar] [CrossRef]
- Maciel, M.M.; Correia, T.R.; Gaspar, V.M.; Rodrigues, J.M.M.; Choi, I.S.; Mano, J.F. Partial coated steam cells with bioinspired silica as new generation of cellular hybrid materials. Adv. Funct. Mater. 2021, 31, 2009619. [Google Scholar] [CrossRef]
- Guo, Z.; Richardson, J.J.; Kong, B.; Liang, K. Nanohybrids: Materials approaches for bioaugmentation. Sci. Adv. 2020, 6, eaaz0330. [Google Scholar] [CrossRef]
- Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R. Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. Engl. 2008, 47, 3560–3564. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Lee, K.-B.; Kong, B.; Kim, J.-H.; Kim, H.-S.; Choi, I. Biomimetic Encapsulation of Individual Cells with Silica. Angew. Chem. Int. Ed. 2009, 4, 9160–9163. [Google Scholar] [CrossRef]
- Yang, S.H.; Park, J.H.; Choi, I.S. Layer-by-layer approach to bio-inspired large-area formation of silica thin films. Bull. Korean Chem. Soc. 2009, 30, 2165–2168. [Google Scholar] [CrossRef]
- Yang, S.H.; Choi, I.S. Bio-inspired silification on patterned surfaces generated by microcontact printing and layer-by-layer self-assembly. Chem. Asian J. 2009, 4, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hong, D.; Choi, J.Y.; Kim, J.Y.; Lee, S.H.; Kim, H.M.; Yang, S.H.; Choi, I.S. Layer-by-Layer-based silica encapsulation of individual yeast with thickness control. Chem. Asian J. 2015, 10, 129–132. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, C.; Ma, Y.; Yang, W. Yolk–shell encapsulation of cells by biomimetic mineralization and visible light-induced surface graft polymerization. Biomacromolecules 2023, 24, 6032–6040. [Google Scholar] [CrossRef]
- Lee, J.; Choi, I.S.; Yang, S.H. Cytocompatibility optimization for silica coating of individual HeLa Cells. Bull. Korean Chem. Soc. 2015, 36, 1278–1281. [Google Scholar] [CrossRef]
- Chu, Z.; Zhang, B.; Wu, Z.; Zhang, J.; Cheng, Y.; Wang, X.; Shi, J.; Jiang, Z. Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation. Front. Chem. Sci. Eng. 2014, 18, 39. [Google Scholar] [CrossRef]
- Knecht, M.R.; Wright, D.W. Amine-terminated dendrimers as biomimetic templates for nanosphere formation. Langmuir 2004, 20, 4728–4732. [Google Scholar] [CrossRef]
- Adamson, D.H.; Dabbs, D.M.; Pacheco, C.R.; Giotto, M.V.; Morse, D.E.; Aksay, I.A. Non-peptide polymeric silicatein α mimic for neutral pH catalysis in the formation of silica. Macromolecules 2007, 40, 5710–5717. [Google Scholar] [CrossRef]
- Mann, S. Molecular recognition in biomineralization. Nature 1988, 332, 119–124. [Google Scholar] [CrossRef]
- Mann, S.; Archibald, D.D.; Didymus, J.M.; Douglas, T.; Heywood, B.R.; Meldrum, F.C.; Reeves, N.J. Crystallization at inorganic-organic interfaces: Biominerals and biomimetic synthesis. Science 1993, 261, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.-P.; Hung, Y.; Chang, J.-H.; Lin, C.-H.; Mou, C.-Y. Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 6883–6890. [Google Scholar] [CrossRef] [PubMed]
- Betancor, L.; Luckarift, H.R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008, 26, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.R.; Specht, C.A.; Rus, F.; Lee, C.K.; Abraham, A.; Levitz, S.M.; Ostroff, G.R. An efficient (nano) silica-in glucan particles protein encapsulation approach for improved thermal stability. J. Control. Release 2023, 357, 175–184. [Google Scholar] [CrossRef]
- Nakahara, Y.; Nakajima, Y.; Okada, S.; Miyazaki, J.; Yajima, S. Synthesis of silica nanoparticles with physical encapsulation of near-infrared fluorescent dyes and their tannic acid coating. ACS Omega 2021, 6, 17651–17659. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—Opportunities & challenges. Nanoscale 2010, 2, 1870–1883. [Google Scholar] [CrossRef]
- Zeković, D.B.; Kwiatkowski, S.; Vrvić, M.M.; Jakovljević, D.; Moran, C.A. Natural and modified (1-3)-β-D-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol. 2005, 25, 205–230. [Google Scholar] [CrossRef]
- Osumi, M. The ultrastructure of yeast: Cell wall structure and formation. Micron 1998, 29, 207–233. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, S.H.; Lee, J.; Ko, E.H.; Hong, D.; Choi, I.S. Nanocoating of single cells: From maintenance of cell viability to manipulation of cellular activities. Adv. Mater. 2014, 26, 2001–2010. [Google Scholar] [CrossRef]
- Fakhrullin, R.F.; Zamaleeva, A.J.; Minullina, R.T.; Konnova, S.A.; Paunov, V.N. Cyborg cells: Functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 2012, 41, 4189–4206. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shimizu, K.; Cha, J.N.; Stucky, G.D.; Morse, D.E. Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionality. Angew. Chem. Int. Ed. 1999, 38, 779–782. [Google Scholar] [CrossRef]
- Weinzierl, D.; Lind, A.; Kunz, W. Hollow SiO2 microspheres produced by coating yeast cells. Cryst. Growth Des. 2009, 9, 2318–2323. [Google Scholar] [CrossRef]
- Liang, M.-K.; Patwardhan, S.V.; Danilovtseva, E.N.; Annenkov, V.V.; Perry, C.C. Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification. J. Mater. Res. 2009, 24, 1700–1708. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, K.-B.; Chi, Y.S.; Kim, W.-J.; Paik, H.-j.; Choi, I.S. Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(Dimethylamino)ethyl methacrylate and silicic acid. Langmuir 2004, 20, 7904–7906. [Google Scholar] [CrossRef]
- Yang, S.H.; Ko, E.H.; Jung, Y.H.; Choi, I.S. Bioinspired functionalization of silica-encapsulated yeast cells. Angew. Chem. Int. Ed. 2011, 50, 6115–6118. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Lantsova, E.A.; Rybochkin, P.V.; Arlyapov, V.A.; Plekhanova, Y.V.; Reshetilov, A.N. The use of diethoxydimethylsilane as the basis of a hybrid organosilicon material for the production of biosensitive membranes for sensory devices. Membranes 2022, 12, 983. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P.; Jiang, Z.; Sun, X.; He, H.; Yan, P.; Xu, Y.; Liu, Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr. Polym. 2023, 319, 121163. [Google Scholar] [CrossRef]
- Błauż, A.; Rychlik, B.; Plazuk, D.; Peccati, F.; Jiménez-Osés, G.; Steinke, U.; Sierant, M.; Trzeciak, K.; Skorupska, E.; Miksa, B. Bioton-phenosafranin as a new photosensitive conjugate for targeted therapy and imaging. New J. Chem. 2021, 45, 9691–9702. [Google Scholar] [CrossRef]
- Miksa, B.; Trzeciak, K.; Górecki, M.; Kamińska, A.; Rozanski, A.; Kaźmierski, S.; Imiela, M.; Ziabka, M. Hybrid poly(dopamine/phenosafranin) microparticles as replicas of yeast capsules for the immobilization of myoglobin. React. Funct. Polym. 2024, 201, 105946. [Google Scholar] [CrossRef]
- Hazafy, D.; Salvia, M.-V.; Mills, A.; Hutchings, M.G.; Evstigneev, M.P.; Parkinson, J.A. NMR analysis of Nile Blue (C.I. Basic Blue 12) and Thionine (C.I. 52000) in solution. Dyes Pigm. 2011, 88, 315–325. [Google Scholar] [CrossRef]
- Proevska, L.I.; Pojarlieff, I.G. 1H NMR Spectra and structure of safranines. Hindered rotation of the 3- Dialkylamino group in 7-azo derivatives. Dyes Pigm. 1998, 36, 177–190. [Google Scholar] [CrossRef]
- Fairweather, J.K.; Him, J.L.K.; Heux, L.; Driguez, H.; Bulone, V. Structural characterization by 13C-NMR spectroscopy of products synthesized in vitro by polysaccharide synthases using 13C-enriched glycosyl donors: Application to a UDP-glucose(1-3)-D-glucan synthase from blackberry (Rubus fruticosus). Glycobiology 2004, 14, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Bikmurzin, R.; Maršalka, A.; Kalėdienė, L. Solid-state 13C Nuclear Magnetic Resonance study of soluble and insoluble α-glucans extracted from Candida lusitaniae. Molecules 2023, 28, 8066. [Google Scholar] [CrossRef] [PubMed]
- Juan-Díaz, M.; Martínez-Ibáñez, M.; Hernández-Escolano, M.; Cabedo, L.; Izquierdo, R.; Suay, J.; Gurruchaga, M.; Goñi, I. Studies of the degradation of hybrid sol-gel coatings in aqueous medium. Prog. Org. Coat. 2014, 77, 1799–1806. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of vibrational spectroscopic techniques in the study of the natural polysaccharides and their cross-linking process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef]
- Snehalatha, M.; Hubert Joe, I.; Ravikumar, C.; Jayakumar, V.S. Azure A chloride: Computational and spectroscopic study. J. Raman Spectrosc. 2009, 40, 176–182. [Google Scholar] [CrossRef]
- Ćiric-Marjanović, G.; Binova, N.V.; Trchová, M.; Stejskal, J. Chemical oxidative polymerization of safranines. J. Phys. Chem. B 2007, 111, 2188–2199. [Google Scholar] [CrossRef]
- do Nascimento, G.M.; de Oliveira, R.C.; Pradie, N.A.; Gessolo Lins, P.R.; Woefel, P.R.; Martinez, G.R.; di Mascio, P.; Dresselhaus, M.S.; Corio, P. Single-wall carbon nanotubes modified with organic dyes: Synthesis, characterization and potential cytotoxic effects. J. Photochem. Photobiol. A Chem. 2010, 211, 99–107. [Google Scholar] [CrossRef]
- Capeletti, L.B.; Baibich, I.M.; Butler, I.S.; dos Santos, J.H.Z. Infrared and Raman spectroscopic characterization organic substituted hybrid silicas. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 619–625. [Google Scholar] [CrossRef]
- Mei, M.; Bai, B.; Zheng, D.; Hu, N.; Wang, H. Novel fabrication of yeast biochar-based photothermal-responsive platform for controlled imidacloprid release. RSC Adv. 2021, 11, 19395–19405. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Bai, B.; Wang, H.; Suo, Y. Novel fabrication of PAA/PVA/Yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes. J. Polym. Environ. 2018, 26, 567–588. [Google Scholar] [CrossRef]
- Zheng, D.; Bai, B.; Xu, X.; He, Y.; Li, S.; Hu, N.; Wang, H. Fabrication of detonation nanodiamond@sodium alginate hydrogel beads and their performance in sunlight-triggered water release. RSC Adv. 2019, 9, 27961–27972. [Google Scholar] [CrossRef] [PubMed]
- ALOthman, Z.A. Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874. [Google Scholar] [CrossRef]
- Durai Murugan, K.; Natarajan, P. Studies on the structural transitions and self-organization behavior of polyacrylic acids with complementary polymers in aqueous solution by laser flash photolysis method using the triplet state of covalent bound phenosafranin. Eur. Polym. J. 2011, 47, 1664–1675. [Google Scholar] [CrossRef]
- Miksa, B. The phenazine scaffold used as cytotoxic pharmacophore applied in bactericidal, antiparasitic and antitumor agents. Helv. Chim. Acta 2022, 105, e202200066. [Google Scholar] [CrossRef]
- Wainwright, M.; Mohr, H.; Walker, W.H. Phenothiazinum derivatives for pathogen inactivation in blood products. J. Photochem. Photobiol. B Biol. 2007, 86, 45–48. [Google Scholar] [CrossRef]
- Eisfeld, A.; Briggs, J.S. The J- and H-bands of organic dye aggregates. Chem. Phys. 2006, 324, 376–384. [Google Scholar] [CrossRef]
- Broglia, M.F.; Bertolotti, S.G.; Previtali, C.M.; Montejano, H.A. Solvatochromic effects on the fluorescence and triplet-triplet absorption of phenosafranine in protic and aprotic solvents. J. Photochem. Photobiol. A 2006, 180, 143–149. [Google Scholar] [CrossRef]
- Chen, X.; Sun-Waterhouse, D.; Yao, W.; Li, X.; Zhao, M.; You, L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem. 2021, 365, 130524. [Google Scholar] [CrossRef]
- Soto, E.R.; Ostroff, G.R. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 2008, 19, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.K.; Bhat, S.N. Dye-surfactant interaction in submicellar concentration range. Bull. Chem. Soc. Jpn. 1992, 65, 1089–1095. [Google Scholar] [CrossRef]
- Paul, P.; Kumar, G.S. Spectroscopic studies on the binding interactions of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 107, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Skupin-Mrugalska, P.; Koczorowski, T.; Szczolko, W.; Dlugaszewska, J.; Teubert, A.; Piotrowska-Kempisty, H.; Goslinski, T.; Sobotta, L. Cationic porphyrazines with morpholinoethyl substituents-Syntheses, optical properties, and photocytotoxicities. Dyes Pigm. 2022; 197, 109937. [Google Scholar]
- Wysocki, M.; Ziental, D.; Jozkowiak, M.; Dlugaszewska, J.; Piotrowska-Kempisty, H.; Güzel, E.; Sobotta, L. Porphyrazine/phthalocyanine hybrid complexes—Antibacterial and anticancer photodynamic and sonodynamic activity. Synth. Met. 2023, 299, 117474. [Google Scholar] [CrossRef]
- Ogunsipe, A.; Durmuş, M.; Atilla, D.; Gürek, A.G.; Ahsen, V.; Nyokong, T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synth. Met. 2008, 158, 839–847. [Google Scholar] [CrossRef]
- Chauke, V.; Ogunsipe, A.; Durmuş, M.; Nyokong, T. Novel gallium(III) phthalocyanine derivatives—Synthesis, photophysics and photochemistry. Polyhedron 2007, 26, 2663–2671. [Google Scholar] [CrossRef]
- Seotsanyana-Mokhosi, I.; Kuznetsova, N.; Nyokong, T. Photochemical studies of tetra-2,3-pyridinoporphyrazines. J. Photochem. Photobiol. A 2001, 140, 215–222. [Google Scholar] [CrossRef]
Compound | Solvent | ΦΔ | 106 ΦP |
---|---|---|---|
PSF | DMF | 0.23 | 91.32 |
DMSO | 0.63 | 70.17 | |
YC@PSF | DMF | 0.0031 | - |
DMSO | 0.0023 | - | |
YC@PSF@SiO2 | DMF | 0.0023 | - |
DMSO | 0.0238 | - | |
ZnPc | DMF | 0.56 | 10.2 |
DMSO | 0.67 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miksa, B.; Trzeciak, K.; Kaźmierski, S.; Rozanski, A.; Potrzebowski, M.; Rozga-Wijas, K.; Sobotta, L.; Ziabka, M.; Płódowska, M.; Szary, K. Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures. Molecules 2024, 29, 5363. https://doi.org/10.3390/molecules29225363
Miksa B, Trzeciak K, Kaźmierski S, Rozanski A, Potrzebowski M, Rozga-Wijas K, Sobotta L, Ziabka M, Płódowska M, Szary K. Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures. Molecules. 2024; 29(22):5363. https://doi.org/10.3390/molecules29225363
Chicago/Turabian StyleMiksa, Beata, Katarzyna Trzeciak, Slawomir Kaźmierski, Artur Rozanski, Marek Potrzebowski, Krystyna Rozga-Wijas, Lukasz Sobotta, Magdalena Ziabka, Magdalena Płódowska, and Karol Szary. 2024. "Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures" Molecules 29, no. 22: 5363. https://doi.org/10.3390/molecules29225363
APA StyleMiksa, B., Trzeciak, K., Kaźmierski, S., Rozanski, A., Potrzebowski, M., Rozga-Wijas, K., Sobotta, L., Ziabka, M., Płódowska, M., & Szary, K. (2024). Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures. Molecules, 29(22), 5363. https://doi.org/10.3390/molecules29225363