Photoreactions of the C2H4–SO2 Complex in a Low-Temperature Matrix Investigated by Infrared Spectroscopy and Density Functional Theory Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. Calculations
3. Results and Discussion
3.1. Assignment of Observed Vibrational Peaks
3.2. Comparison with Gas Phase Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, W.; Chen, T.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. A Review of Secondary Organic Aerosols Formation Focusing on Organosulfates and Organic Nitrates. J. Hazard. Mater. 2022, 430, 128406. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, M.; Xu, R.; Tilgner, A.; Kwong, K.C.; Mutzel, A.; Poon, H.Y.; Otto, T.; Schaefer, T.; Poulain, L.; Chan, M.N. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. Environ. Sci. Technol. 2020, 54, 3767–3782. [Google Scholar] [CrossRef] [PubMed]
- Frederick, D.; Cogan, H.; Marvel, C. The Reaction between Sulfur Dioxide and Olefins. Cyclohexene. J. Am. Chem. Soc. 1934, 56, 1815–1819. [Google Scholar] [CrossRef]
- Ryden, L.; Marvel, C. The Reaction between Sulfur Dioxide and Olefins. III. 1 Higher Olefins and Some Limitations of the Reaction. J. Am. Chem. Soc. 1935, 57, 2311–2314. [Google Scholar] [CrossRef]
- Snow, R.; Frey, F. Reaction of Sulfur Dioxide with Olefins. Ind. Eng. Chem. 1938, 30, 176–182. [Google Scholar] [CrossRef]
- Dainton, F.; Ivin, K. The Photochemical Formation of Sulphinic Acids from Sulphur Dioxide and Hydrocarbons. Trans. Faraday Soc. 1950, 46, 374–381. [Google Scholar] [CrossRef]
- Booth, D.; Dainton, F.; Ivin, K. Thermodynamics of Formation and Absorption Spectra of 1:1 Complexes between Sulphur Dioxide and Olefines. Trans. Faraday Soc. 1959, 55, 1293–1309. [Google Scholar] [CrossRef]
- Johnston, H.S.; dev Jain, K. Sulfur Dioxide Sensitized Photochemical Oxidation of Hydrocarbons. Science 1960, 131, 1523–1524. [Google Scholar] [CrossRef]
- Cehelnik, E.; Spicer, C.W.; Heicklen, J. Photolysis of Sulfur Dioxide in the Presence of Foreign Gases. I. Carbon Monoxide and Perfluoroethylene. J. Am. Chem. Soc. 1971, 93, 5371–5380. [Google Scholar] [CrossRef]
- Kelly, N.; Meagher, J.F.; Heicklen, J. The Photolysis of Sulfur Dioxide in the Presence of Foreign Gases. VIII: Excitation of SO2 at 3600–4100 Å in the Presence of Acetylene. J. Photochem. 1976, 6, 157–172. [Google Scholar] [CrossRef]
- Partymiller, K.; Meagher, J.F.; Heicklen, J. The Photolysis of Sulfur Dioxide in the Presence of Foreign Gases: IX. Allene. J. Photochem. 1976, 6, 405–430. [Google Scholar] [CrossRef]
- Wampler, F.B.; Böttenheim, J.W. The SO2 (3B1) Photosensitized Isomerization of Cis-and Trans-1,2-dichloroethylene. Int. J. Chem. Kinet. 1976, 8, 585–597. [Google Scholar] [CrossRef]
- LaBarge, M.S.; Hillig, K.W.; Kuczkowski, R.L. The Microwave Spectrum and Structure of the Ethylene—Sulfur Dioxide Complex. Angew. Chem. Int. Ed. Engl. 1988, 27, 1356–1358. [Google Scholar] [CrossRef]
- Andrews, A.M.; Taleb-Bendiab, A.; LaBarge, M.S.; Hillig, K.W.; Kuczkowski, R.L. Microwave Spectrum, Structure, Barrier to Internal Rotation, Dipole Moment, and Deuterium Quadupole Coupling Constants of the Ethylene—Sulfur Dioxide Complex. J. Chem. Phys. 1990, 93, 7030–7040. [Google Scholar] [CrossRef]
- Nord, L. On the Sulphur Dioxide Dimer in Solid Nitrogen. J. Mol. Struct. 1983, 96, 19–25. [Google Scholar] [CrossRef]
- Peebles, S.A.; Kuczkowski, R.L. An Electrostatic Interaction Model Applied to Complexes of Sulfur Dioxide. J. Mol. Struct. 1997, 436, 59–67. [Google Scholar] [CrossRef]
- Resende, S.M.; De Almeida, W.B. Ab Initio Investigation of Internal Rotation in the Ethylene—Sulfur Dioxide Dimer. J. Chem. Phys. 1995, 102, 4184–4188. [Google Scholar] [CrossRef]
- Resende, S.M.; De Almeida, W.B.; van Duijneveldt-van de Rijdt, J.G.; van Duijneveldt, F.B. A Converged Calculation of the Energy Barrier to Internal Rotation in the Ethylene—Sulfur Dioxide Dimer. J. Chem. Phys. 2001, 115, 2476–2482. [Google Scholar] [CrossRef]
- Makarov, V.I.; Kochubei, S.A.; Khmelinskii, I. Photodissociation of (SO2⋯XH) Van Der Waals Complexes and Clusters (XH= C2H2, C2H4, C2H6) Excited at 32 040–32 090 cm−1 with Formation of HSO2 and X. J. Chem. Phys. 2014, 140, 054304. [Google Scholar] [CrossRef]
- Salta, Z.; Ventura, O.N.; Rais, N.; Tasinato, N.; Barone, V. A New Chapter in the Never Ending Story of Cycloadditions: The Puzzling Case of SO2 and Acetylene. J. Comput. Chem. 2024, 45, 1587–1602. [Google Scholar] [CrossRef]
- Ito, F. Observation of Light-Induced Reactions of Olefin—Ozone Complexes in Cryogenic Matrices Using Fourier-Transform Infrared Spectroscopy. Photochem 2022, 2, 150–164. [Google Scholar] [CrossRef]
- Ito, F.; Koga, R.; Negishi, S.; Hirahara, Y. UV Irradiation and Infrared Observation of Sulfur Dioxide Clusters and Solids at Cryogenic Temperature. Chem. Phys. Lett. 2023, 829, 140742. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 09 Revision A. 02; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Revision C. 01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Isoniemi, E.; Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. Infrared Spectroscopy of H2S and SH in Rare-Gas Matrixes. J. Phys. Chem. A 1999, 103, 679–685. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L. Wavelength-Dependent Photolysis of Glyoxal in the 290–420 nm Region. J. Phys. Chem. A 2003, 107, 4643–4651. [Google Scholar] [CrossRef]
- Johnson, R.D., III. NIST Computational Chemistry Comparison and Benchmark Database; NIST Standard Reference Database Number 101 Release 22; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Engdahl, A.; Nelander, B. Infrared Spectrum of Cis-Glyoxal. Chem. Phys. Lett. 1988, 148, 264–268. [Google Scholar] [CrossRef]
- Mai, S.; Marquetand, P.; González, L. Non-Adiabatic and Intersystem Crossing Dynamics in SO2. II. The Role of Triplet States in the Bound State Dynamics Studied by Surface-Hopping Simulations. J. Chem. Phys. 2014, 140, 204302. [Google Scholar] [CrossRef]
- Lévêque, C.; Taïeb, R.; Köppel, H. Communication: Theoretical Prediction of the Importance of the 3B2 State in the Dynamics of Sulfur Dioxide. J. Chem. Phys. 2014, 140, 091101. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, I.; Boguslavskiy, A.E.; Mikosch, J.; Bertrand, J.B.; Wörner, H.J.; Villeneuve, D.M.; Spanner, M.; Patchkovskii, S.; Stolow, A. Excited State Dynamics in SO2. I. Bound State Relaxation Studied by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy. J. Chem. Phys. 2014, 140, 204301. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, V.; Ram, N.B.; Rajeev, R.; Wörne, H.J. Time-Resolved Photoelectron Imaging with a Femtosecond Vacuum-Ultraviolet Light Source: Dynamics in the and -Bands of SO2. J. Chem. Phys. 2017, 146, 084301. [Google Scholar] [CrossRef]
- Makarov, V.I.; Kochubei, S.A.; Khmelinskii, I. Photochemical Reaction Dynamics in SO2-Acetylene Complexes. J. Chem. Phys. 2010, 132, 224309. [Google Scholar] [CrossRef]
- Tanskanen, H.; Khriachtchev, L.; Räsänen, M.; Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyurin, D.A. Infrared Absorption and Electron Paramagnetic Resonance Studies of Vinyl Radical in Noble-Gas Matrices. J. Chem. Phys. 2005, 123, 064318. [Google Scholar] [CrossRef] [PubMed]
- Isoniemi, E.; Khriachtchev, L.; Lundell, J.; Räsänen, M. HSO2 Isomers in Rare-Gas Solids. Phys. Chem. Chem. Phys. 2002, 4, 1549–1554. [Google Scholar] [CrossRef]
- Anglada, J.M.; Martins-Costa, M.T.C.; Francisco, J.S.; Ruiz-López, M.F. Triplet State Promoted Reaction of SO2 with H2O by Competition between Proton Coupled Electron Transfer (Pcet) and Hydrogen Atom Transfer (Hat) Processes. Phys. Chem. Chem. Phys. 2019, 21, 9779–9784. [Google Scholar] [CrossRef] [PubMed]
- Anglada, J.M.; Martins-Costa, M.T.C.; Francisco, J.S.; Ruiz-López, M.F. Triplet State Radical Chemistry: Significance of the Reaction of 3SO2 with HCOOH and HNO3. J. Am. Chem. Soc. 2024, 146, 14297–14306. [Google Scholar] [CrossRef]
Observed Peak Position (cm−1) | Calculated Peak Position (cm−1) a | Assignment | Vibrational Mode |
---|---|---|---|
C2H4–SO2 | |||
947 | 919 | oxathietane 2-oxide | CH2 twist |
960 | 950 | oxathietane 2-oxide | C-O str |
1182 | 1170 | oxathietane 2-oxide | S=O str + CH2 twist |
1195 | 1177 | oxathietane 2-oxide | S=O str + CH2 twist |
1726 | 1745 | 2-hydroxysulfanylacetaldehyde | C=O str |
2920 | 2945 | oxathietane 2-oxide | CH2 str |
C2D4–SO2 | |||
920 | 909 | oxathietane 2-oxide-d4 | C-O str |
973 | 949 | oxathietane 2-oxide-d4 | CD2 wag |
987 | 924 | 2-hydroxysulfanylacetaldehyde-d4 | CD2 wag |
1080 | 1068 | oxathietane 2-oxide-d4 | CD2 wag |
1164 | 1132 | oxathietane 2-oxide-d4 | C-C str |
1189 | 1173 | oxathietane 2-oxide-d4 | S=O str |
1190 | oxathietane 2-oxide-d4 | Fermi? b | |
1688 | 1724 | 2-hydroxysulfanylacetaldehyde-d4 | C=O str |
2079 | 2070 | 2-hydroxysulfanylacetaldehyde-4 | C-D str |
2189 | 2-hydroxysulfanylacetaldehyde-d4 | Fermi? b | |
2190 | 2139 | oxathietane 2-oxide-d4 | CD2 sym str |
2210 | 2226 | oxathietane 2-oxide-d4 | CD2 asym str |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, T.; Ito, F.; Miyazaki, J. Photoreactions of the C2H4–SO2 Complex in a Low-Temperature Matrix Investigated by Infrared Spectroscopy and Density Functional Theory Calculations. Molecules 2024, 29, 5362. https://doi.org/10.3390/molecules29225362
Takahashi T, Ito F, Miyazaki J. Photoreactions of the C2H4–SO2 Complex in a Low-Temperature Matrix Investigated by Infrared Spectroscopy and Density Functional Theory Calculations. Molecules. 2024; 29(22):5362. https://doi.org/10.3390/molecules29225362
Chicago/Turabian StyleTakahashi, Taito, Fumiyuki Ito, and Jun Miyazaki. 2024. "Photoreactions of the C2H4–SO2 Complex in a Low-Temperature Matrix Investigated by Infrared Spectroscopy and Density Functional Theory Calculations" Molecules 29, no. 22: 5362. https://doi.org/10.3390/molecules29225362
APA StyleTakahashi, T., Ito, F., & Miyazaki, J. (2024). Photoreactions of the C2H4–SO2 Complex in a Low-Temperature Matrix Investigated by Infrared Spectroscopy and Density Functional Theory Calculations. Molecules, 29(22), 5362. https://doi.org/10.3390/molecules29225362