Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Trinuclear Ru3(NO)2(CO)n Derivatives
2.1.1. Ru3(CO)10(NO)2
2.1.2. Ru3(CO)n(NO)2 (n = 9, 8, 7)
2.2. Trinuclear Ru3(N)(CO)n(NO) Derivatives Arising from CO2 Loss from Ru3(CO)n(NO)2 Derivatives
2.3. Trinuclear Dinitrogen Complexes Ru3N2(CO)n (n = 10, 9, 8) Arising Formally by Double CO2 Loss from Ru3(CO)n(NO)2 Trinuclear Derivatives
2.4. Trinuclear Ruthenium Carbonyl Isocyanates Ru3(N)(CO)n(NCO) and Ru3(CO)n(NCO)(NO)
2.5. Tetranuclear Derivatives with Central Ru4N Units
2.6. Thermochemistry
3. Theoretical Methods
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norton, J.R.; Collman, J.P.; Dolcetti, G.; Robinson, W.T. The preparation and structure of ruthenium and osmium nitrosyl clusters containing double-nitrosyl bridges. Inorg. Chem. 1972, 11, 382–388. [Google Scholar] [CrossRef]
- Attard, J.P.; Johnson, B.F.G.; Lewis, J.; Mace, J.M.; Raithby, P.R. The reduction of (µ2-NO) in Ru3(CO)10(µ2-NO)2 by carbon monoxide: Evidence for the formation of a triruthenium nitride intermediate and the structural characterization of Ru4N(CO)12(µ2-NO) and Ru4N(CO)12(µ2-NCO). Chem Commun. 1985, 21, 1526–1528. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Feng, X.; Xie, Y.; King, R.B.; Schaefer, H.F. Nitrous oxide and dinitrogen complexes as intermediates in the decomposition of metal carbonyl nitrosyls: The triruthenium system. Polyhedron 2024, 256, 117102. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.W.Z.; Liu, Z.P.; Fan, K.; Xie, Y.Y.; Schaefer, H.F. Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Agn(n ≤ 4). J. Chem. Phys. 2006, 124, 184102. [Google Scholar] [CrossRef] [PubMed]
- Chermette, H. Density functional theory. A powerful tool for theoretical studies in coordination chemisry. Coord. Chem. Rev. 1998, 178–180, 699–721. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Valency and Bonding: A Natural Bond Order Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005; pp. 32–36. [Google Scholar]
- Dolg, M.; Stoll, H.; Preuss, H. A combination of quasi-relativistic pseudopotential and ligand-field calculations for lanthanoid compounds. Theor. Chim. Acta 1993, 85, 441–445. [Google Scholar] [CrossRef]
- Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Ab-initio energy-adjusted pseudopotentials for elements of Groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Wachters, A.J.H. Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 1970, 52, 1033. [Google Scholar] [CrossRef]
- Hood, D.M.; Pitzer, R.M.; Schaefer, H.F. Electronic-structure of homoleptic transition-metal hydrides—TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4. J. Chem. Phys. 1979, 71, 705–712. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1970, 53, 2823–2833. [Google Scholar] [CrossRef]
- Huzinaga, S. Gaussian-type functions for polyatomic systems. I. J. Chem. Phys. 1965, 42, 1293–1302. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, version A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Dissociation Reaction | mPW1PW91 | BP86 | ||
---|---|---|---|---|
ΔE | ΔG | ΔE | ΔG | |
Ru3(CO)10(NO)2→Ru3(CO)9(NO)2 + CO | 29.2 | 18.7 | 29.5 | 19.1 |
Ru3(CO)9(NO)2→Ru3(CO)8(NO)2 + CO | 73.4 | 63.0 | 64.3 | 55.3 |
Ru3(CO)8(NO)2→Ru3(CO)7(NO)2 + CO | 6.4 | −4.4 | 13.6 | 2.4 |
Dissociation Reaction | mPW1PW91 | BP86 | ||
---|---|---|---|---|
ΔE | ΔG | ΔE | ΔG | |
2Ru3(CO)9(NO)2→Ru3(CO)10(NO)2 + Ru3(CO)8(NO)2 | 44.2 | 44.3 | 34.9 | 36.2 |
Ru3(CO)10(NO)2→Ru(NO)2(CO)2 + Ru2(CO)8 | 45.6 | 28.3 | 25.9 | 9.4 |
Ru3(CO)9(NO)2→Ru(NO)2(CO)2 +Ru2(CO)7 | 44.8 | 28.7 | 21.4 | 5.5 |
Ru3(CO)8(NO)2→Ru(CO)2(NO)2 +Ru2(CO)6 | 12.8 | -3.8 | 4.4 | −11.6 |
Ru3(CO)10(NO)2→Ru2(CO)5(NO)2 + Ru(CO)5 | 40.9 | 25.5 | 23.2 | 8.3 |
Ru3(CO)10(NO)2→Ru2(CO)6(NO)2 + Ru(CO)4 | 35.8 | 20.4 | 27.3 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Feng, X.; Xie, Y.; King, R.B.; Schaefer, H.F. Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand. Molecules 2024, 29, 4165. https://doi.org/10.3390/molecules29174165
Chen S, Feng X, Xie Y, King RB, Schaefer HF. Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand. Molecules. 2024; 29(17):4165. https://doi.org/10.3390/molecules29174165
Chicago/Turabian StyleChen, Shengchun, Xuejun Feng, Yaoming Xie, R. Bruce King, and Henry F. Schaefer. 2024. "Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand" Molecules 29, no. 17: 4165. https://doi.org/10.3390/molecules29174165
APA StyleChen, S., Feng, X., Xie, Y., King, R. B., & Schaefer, H. F. (2024). Trinuclear and Tetranuclear Ruthenium Carbonyl Nitrosyls: Oxidation of a Carbonyl Ligand by an Adjacent Nitrosyl Ligand. Molecules, 29(17), 4165. https://doi.org/10.3390/molecules29174165