Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Adsorbents
2.2. Optimization of the Adsorption Process
2.3. Adsorption Studies
3. Materials and Methods
3.1. Materials
3.2. Adsorption Experiments
3.3. Experimental Design
3.4. Adsorption Kinetic and Equilibrium Studies
3.5. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Martin, M.; Rosca, M.; Rocha, V.; Lagoa, A.; Neves, I.C.; Tavares, T. Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Sep. Purif. Technol. 2020, 235, 116139. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Yang, Z.; Zhao, P.; Meng, X. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. J. Hazard. Mat. 2023, 456, 131687. [Google Scholar] [CrossRef]
- Favas, P.J.C.; Sarkar, S.K.; Rakshit, D.; Venkatachalam, P.; Prasad, M.N.V. Acid mine drainages from abandoned mines: Hydrochemistry, environmental impact, resource recovery, and prevention of pollution. In Environmental Materials and Waste; Prasad, M.N.V., Kaimin, S., Eds.; Academic Press: Cambridge, MA, USA, 2016; Chapter 17; pp. 413–462. [Google Scholar]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Esmaeili, A.; Mobini, M.; Eslami, H. Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Appl. Water Sci. 2019, 9, 2009–2014. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.M.; Maree, J.P.; Mamba, B.B. Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Miner. Eng. 2015, 81, 79–87. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Albuquerque, T.; Henriques, R.; Flor-Arnau, N.; Pamplona, J.; Macias, F. Algae in acid mine drainage and relationships with pollutants in a degraded mining ecosystem. Minerals 2021, 11, 110. [Google Scholar] [CrossRef]
- Levio-Raiman, M.; Briceño, G.; Schalchli, H.; Bornhardt, C.; Diez, M.C. Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environ. Technol. Innov. 2021, 24, 101853. [Google Scholar] [CrossRef]
- Du, T.; Bogush, A.; Mašek, O.; Purton, S.; Campos, L.C. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: A review. Chemosphere 2022, 304, 135284. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Perez, D.; Alcántara-Hernández, R.J.; Romero, F.M.; González-Chávez, J.L. Changes in the prokaryotic diversity in response to hydrochemical variations during an acid mine drainage passive treatment. Sci. Total Environ. 2022, 842, 156629. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process. Saf. Environ. Prot. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Hu, X.; Yang, H.; Tan, K.; Hou, S.; Cai, J.; Yuan, X.; Lan, Q.; Cao, J.; Yan, S. Treatment and recovery of iron from acid mine drainage: A pilot-scale study. J. Environ. Chem. Eng. 2022, 10, 106974. [Google Scholar] [CrossRef]
- Sibrell, P.L.; Montgomery, G.A.; Ritenour, K.L.; Tucker, T.W. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge. Water Res. 2009, 43, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.T.; Antunes, M.; Sequeira-Braga, A.; Prudêncio, M.I.; Marques, R.; Pamplona, J. Mineralogical attenuation for metallic remediation in a passive system for mine water treatment. Environ. Earth Sci. 2012, 66, 39–54. [Google Scholar] [CrossRef]
- Faber, P.; Ronald, A.; Millar, B.W. Methylthioninium chloride: Pharmacology and clinical applications with special emphasis on nitric oxide mediated vasodilatory shock during cardiopulmonary bypass. Anaesthesia 2005, 60, 575–587. [Google Scholar] [CrossRef]
- Thetner, D. Triphenylmethane and related dyes. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2013; ISBN 9780471484943. [Google Scholar] [CrossRef]
- Ferreira, N.; Viana, T.; Henriques, B.; Tavares, D.S.; Jacinto, J.; Colonia, J.; Pinto, J.; Pereira, E. Application of response surface methodology and box–behnken design for the optimization of mercury removal by Ulva sp. J. Hazard. Mat. 2023, 445, 130405. [Google Scholar] [CrossRef]
- Rumky, J.; Ncibi, M.C.; Burgos-Castillo, R.C.; Deb, A.; Sillanpaa, M. Optimization of integrated ultrasonic-Fenton system for metal removal and dewatering of anaerobically digested sludge by Box-Behnken design. Sci. Total Environ. 2018, 645, 573–584. [Google Scholar] [CrossRef]
- Assila, O.; Bencheqroun, Z.; Rombi, E.; Valente, T.; Braga, A.S.; Zaitan, H.; Kherbeche, A.; Soares, O.S.G.P.; Pereira, M.F.R.; Fonseca, A.M.; et al. Raw clays from Morocco for degradation of pollutants by Fenton-like reaction for water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132630. [Google Scholar] [CrossRef]
- Bencheqroun, Z.; Mrabet, I.E.; Kachabi, M.; Nawdali, M.; Neves, I.; Zaitan, H. Removal of Basic Dyes from Aqueous Solutions by Adsorption onto Moroccan Clay (Fez City). Mediterr. J. Chem. 2019, 8, 158–167. [Google Scholar]
- Louati, S.; Baklouti, S.; Samet, B. Geopolymers Based on Phosphoric Acid and Illito-Kaolinitic Clay. Adv. Mater. Sci. Eng. 2016, 2016, 2359759. [Google Scholar] [CrossRef]
- Rouchon, V.; Badet, H.; Belhadj, O.; Bonnerot, O.; Lavédrine, B.; Michard, J.-G. Raman and FTIR spectroscopy applied to the conservation report of paleontological collections: Identification of Raman and FTIR signatures of several iron sulfate species such as ferrinatrite and sideronatrite. J. Raman Spectrosc. 2012, 43, 1265–1274. [Google Scholar] [CrossRef]
- Gupta, V.K.; Shrivastava, A.K.; Jain, N. Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species. Water Res. 2001, 35, 4079–4085. [Google Scholar] [CrossRef] [PubMed]
- Salem, D.M.S.A.; Ismail, M.M. Characterization of cellulose and cellulose nanofibers isolated from various seaweed species. Egypt. J. Aquat. Res. 2022, 48, 307–313. [Google Scholar] [CrossRef]
- Tajat, N.; El Hayaoui, W.; Bougdour, N.; Idlahcen, A.; Radaa, C.; Bakas, I.; Tamimi, M.; Cherkaoui, O.; Badreddine, M.; Assabbane, A.; et al. Utilization of Zn–Al–Cl layered double hydroxide as an adsorbent for the removal of anionic dye Remazol Red 23 in aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Nanotechnol. Environ. Eng. 2022, 7, 343–357. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Peng, C.; Min, F.; Song, S. Salt coagulation or flocculation? In situ zeta potential study on ion correlation and slime coating with the presence of clay: A case of coal slurry aggregation. Environ. Res. 2020, 189, 109875. [Google Scholar] [CrossRef]
Element (wt%) | AGO 1 | AGO-1 1 | V9 1 | CF 1 | ClayMA 2 | ClayMA 1 | Pyr 1 |
---|---|---|---|---|---|---|---|
C | 76.32 | 46.81 | 5.60 | 37.34 | nd | nd | nd |
O | 17.51 | 40.71 | 37.80 | 42.79 | nd | 55.70 | 61.05 |
Si | 0.96 | 1.43 | 0.20 | 0.71 | 27.06 | 21.18 | 20.69 |
Fe | 4.32 | 6.57 | 53.0 | 17.59 | 5.40 | 5.47 | nd |
Al | 0.33 | 0.44 | nd | 0.13 | 12.05 | 10.96 | 14.07 |
Mg | nd | 0.63 | nd | 1.44 | 1.86 | 1.11 | 0.25 |
Na | 0.56 | 1.23 | nd | nd | 0.25 | 0.24 | 0.64 |
Ca | nd | 0.31 | nd | 0.13 | 3.69 | 1.06 | nd |
K | nd | nd | nd | nd | 3.68 | 1.98 | 1.40 |
Ti | nd | nd | nd | nd | 0.51 | nd | nd |
S | nd | nd | nd | 2.80 | nd | nd | 1.91 |
MB | CV | |||
---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | |
R2 | 0.9664 | 0.9844 | 0.9507 | 0.9810 |
Adjusted R2 | 0.9059 | 0.9564 | 0.8619 | 0.9467 |
Predicted R2 | 0.4636 | 0.7526 | 0.2125 | 0.6978 |
Adequate Precision | 13.3306 | 19.2163 | 9.5912 | 18.5072 |
Standard Deviation | 7.16 | 3.99 | 7.37 | 3.05 |
Mean | 84.18 | 27.09 | 56.14 | 18.88 |
Coefficient of Variation (%) | 8.51 | 14.73 | 13.13 | 16.15 |
MB | CV | |||
---|---|---|---|---|
Adsorbent (X1) | ClayMA | pyrophyllite | ||
m (mg, X2) | 15 | 15 | ||
[dye] (ppm, X3) | 30 | 17.5 | ||
Predicted | Experimental | Predicted | Experimental | |
R (%) | 82.42 | 89.90 | 82.45 | 83.10 |
qads (mg/g) | 45.38 | 44.90 | 20.53 | 20.10 |
Dye | MB | CV | ||||
---|---|---|---|---|---|---|
Parameters | qm (mg/g) | KL (L/mg) | R2 | qm (mg/g) | KL (L/mg) | R2 |
ClayMA | 17.7 | 0.60 | 0.9945 | 17.9 | 0.50 | 0.9468 |
Pyr | 30.8 | 3.12 | 0.9939 | 25.4 | 2.04 | 0.9916 |
AGO-1 | 16.0 | 0.21 | 0.9945 | 40.5 | 0.91 | 0.9864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.S.F.; Assila, O.; Fonseca, A.M.; Parpot, P.; Valente, T.; Rombi, E.; Neves, I.C. Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment. Molecules 2024, 29, 3521. https://doi.org/10.3390/molecules29153521
Oliveira MSF, Assila O, Fonseca AM, Parpot P, Valente T, Rombi E, Neves IC. Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment. Molecules. 2024; 29(15):3521. https://doi.org/10.3390/molecules29153521
Chicago/Turabian StyleOliveira, Marta S. F., Ouissal Assila, António M. Fonseca, Pier Parpot, Teresa Valente, Elisabetta Rombi, and Isabel C. Neves. 2024. "Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment" Molecules 29, no. 15: 3521. https://doi.org/10.3390/molecules29153521
APA StyleOliveira, M. S. F., Assila, O., Fonseca, A. M., Parpot, P., Valente, T., Rombi, E., & Neves, I. C. (2024). Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment. Molecules, 29(15), 3521. https://doi.org/10.3390/molecules29153521