Recent Advances in the Research on Luotonins A, B, and E
Abstract
:1. Introduction
2. Synthesis and Biological Activity
2.1. Synthesis of Luotonin A via Construction of the 5H-pyrrolo[4,3-b]pyridine Core (B and C Rings)
2.2. Synthesis of Luotonins A via Construction of the Pyridine Core (B Ring)
2.3. Synthesis of Luotonins A, B, and E via Construction of the Pyrrole Core (C Ring)
2.4. Synthesis of Luotonin A via Construction of the Pyrrolo[1,2-a]pyrimidin-4(6H)-one Core (C a D Rings)
3. Summary and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, T.; Ma, Z.-Z.; Hano, Y.; Chen, Y.-J. Two New Pyrroloquinazolinoquinoline Alkaloids from Peganum nigellastrum. Heterocycles 1997, 46, 541–546. [Google Scholar] [CrossRef]
- Nomura, T.; Ma, Z.-Z.; Hano, Y.; Chen, Y.-J. Two New Quinazoline-Quinoline Alkaloids from Peganum nigellastrum. Heterocycles 1999, 51, 1883–1889. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y.J. Alkaloids and phenylpropanoids from Peganum nigellastrum. Phytochemistry 2000, 53, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hano, Y.; Nomura, T.; Chen, Y. Novel quinazoline-quinoline alkaloids with cytotoxic and DNA topoisomerase II inhibitory activities. Bioorg. Med. Chem. Lett. 2004, 14, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hano, Y.; Qiu, F.; Shao, G.; Chen, Y.; Nomura, T. Triterpenoids and Alkaloids from the Roots of Peganum Nigellastrum. Nat. Prod. Commun. 2008, 3, 149–154. [Google Scholar] [CrossRef]
- Hano, Y.; Ma, Z.; Nomura, T. Luotonin A: A Lead toward Anti-Cancer Agent Development. Heterocycles 2005, 65, 2203–2219. [Google Scholar] [CrossRef]
- Huang, W.P.; Liu, J.L.; Wang, C.L. Progress in the Synthesis of Natural Product Luotonin A and Its Derivatives. Chin. J. Org. Chem. 2009, 29, 1533–1543. [Google Scholar]
- Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2008, 25, 166–187. [Google Scholar] [CrossRef]
- Cagir, A.; Jones, S.H.; Gao, R.; Eisenhauer, B.M.; Hecht, S.M. Luotonin A. A naturally occurring human DNA topoisomerase I poison. J. Am. Chem. Soc. 2003, 125, 13628–13629. [Google Scholar] [CrossRef]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2. J. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Liang, J.L.; Cha, H.C.; Jahng, Y. Recent advances in the studies on luotonins. Molecules 2011, 16, 4861–4883. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Nuss, S. Weinreb amidation as the cornerstone of an improved synthetic route to A-ring-modified derivatives of luotonin A. Molecules 2012, 17, 11363–11378. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Meng, G.; Roger, S.; Wank, S. An efficient and selective access to 1-substituted and 3-substituted derivatives of luotonin A. Tetrahedron 2013, 69, 7066–7072. [Google Scholar] [CrossRef]
- Atia, M.; Bogdán, D.; Brügger, M.; Haider, N.; Mátyus, P. Remarkable regioselectivities in the course of the synthesis of two new Luotonin A derivatives. Tetrahedron 2017, 73, 3231–3239. [Google Scholar] [CrossRef]
- Zhou, H.B.; Liu, G.S.; Yao, Z.J. Short and efficient total synthesis of luotonin A and 22-hydroxyacuminatine using a common cascade strategy. J. Org. Chem. 2007, 72, 6270–6272. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Petersen, J.L.; Wang, K.K. Synthesis of the parent and substituted tetracyclic ABCD ring cores of camptothecins via 1-(3-aryl-2-propynyl)- 1,6-dihydro-6-oxo-2-pyridinecarbonitriles. Org. Lett. 2006, 8, 4665–4667. [Google Scholar] [CrossRef] [PubMed]
- Nociari, M.M.; Shalev, A.; Benias, P.; Russo, C. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J. Immunol. Methods 1998, 213, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ibric, A.; Eckerstorfer, S.; Eder, M.; Louko, I.; Tunjic, L.; Heffeter, P.; Schueffl, H.H.; Marian, B.; Haider, N. Position-Selective Synthesis and Biological Evaluation of Four Isomeric A-Ring Amino Derivatives of the Alkaloid Luotonin A. Molecules 2019, 24, 716. [Google Scholar] [CrossRef] [PubMed]
- Ibric, A.; Battisti, V.; Deckardt, S.; Haller, A.V.; Lee, C.; Protsch, C.; Langer, T.; Heffeter, P.; Schueffl, H.H.; Marian, B.; et al. A-ring and E-ring modifications of the cytotoxic alkaloid Luotonin A: Synthesis, computational and biological studies. Bioorg. Med. Chem. Lett. 2020, 28, 115443. [Google Scholar] [CrossRef]
- Yang, G.Z.; Zhang, J.; Peng, J.W.; Zhang, Z.J.; Zhao, W.B.; Wang, R.X.; Ma, K.Y.; Li, J.C.; Liu, Y.Q.; Zhao, Z.M.; et al. Discovery of luotonin A analogues as potent fungicides and insecticides: Design, synthesis and biological evaluation inspired by natural alkaloid. Eur. J. Med. Chem. 2020, 194, 112253. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, K.; Wang, Z.; Liu, Y.; Ma, D.; Wang, Q. Luotonin A and Its Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. J. Agric. Food Chem. 2020, 68, 8764–8773. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.I.; Arumugam, N.; Suresh Kumar, R.; Mahalingam, S.M.; Sau, S.; Bianchini, G.; Menendez, J.C.; Altaf, M.; Ghabbour, H.A. Design, synthesis and antiproliferative activity of decarbonyl luotonin analogues. Eur. J. Med. Chem. 2017, 138, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.I.; Suresh Kumar, R.; Arumugam, N.; Bianchini, G.; Menéndez, J.C.; Al-thamili, D.M.; Periyasami, G.; Altaf, M. Design and synthesis of A- and D ring-modified analogues of luotonin A with reduced planarity. Tetrahedron Lett. 2019, 60, 1514–1517. [Google Scholar] [CrossRef]
- More, D.A.; Shinde, G.H.; Shaikh, A.C.; Muthukrishnan, M. Oxone promoted dehydrogenative Povarov cyclization of N-aryl glycine derivatives: An approach towards quinoline fused lactones and lactams. RSC Adv. 2019, 9, 30277–30291. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Reddy, B.V.S. Microwave-assisted rapid synthesis of the cytotoxic alkaloid luotonin A. Tetrahedron Lett. 2002, 43, 1905–1907. [Google Scholar] [CrossRef]
- Wu, F.; Dong, W.; Fan, S.; Yuan, Y.; Liang, C.; Chen, A.; Yin, Z.; Zhang, Z. Rapid Synthesis of Luotonin A Derivatives via Synergistic Visible-Light Photoredox and Acid Catalysis. J. Org. Chem. 2022, 87, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Seo, H.A.; Cheon, C.H. Total Synthesis of Luotonin A and Rutaecarpine from an Aldimine via the Designed Cyclization. Org. Lett. 2016, 18, 5280–5283. [Google Scholar] [CrossRef] [PubMed]
- Rasapalli, S.; Sammeta, V.R.; Murphy, Z.F.; Huang, Y.; Boerth, J.A.; Golen, J.A.; Savinov, S.N. Synthesis of C-Ring-Substituted Vasicinones and Luotonins via Regioselective Aza-Nazarov Cyclization of Quinazolinonyl Enones. Org. Lett. 2019, 21, 9824–9828. [Google Scholar] [CrossRef]
- Rasapalli, S.; Sammeta, V.R.; Murphy, Z.F.; Golen, J.A.; Agama, K.; Pommier, Y.; Savinov, S.N. Design and synthesis of C-aryl angular luotonins via a one-pot aza-Nazarov-Friedlander sequence and their Topo-I inhibition studies along with C-aryl vasicinones and luotonins. Bioorg. Med. Chem. Lett. 2021, 41, 127998. [Google Scholar] [CrossRef]
- Song, Y.C.; Wang, M.X.; Yi, Y.Y.; Liu, Y.T.; Zhang, W.X.; Wang, Z.Y.; Sun, Y.Y.; Wu, A.X.; Zhu, Y.P. FeCl3/KI-Catalyzed Tandem Oxidative Cyclization for Switchable Total Synthesis of Luotonin A, B and Derivatives. Adv. Synth. Catal. 2024, 366, 1348–1355. [Google Scholar] [CrossRef]
- Gonzalez-Ruiz, V.; Pascua, I.; Fernandez-Marcelo, T.; Ribelles, P.; Bianchini, G.; Sridharan, V.; Iniesta, P.; Ramos, M.T.; Olives, A.I.; Martin, M.A.; et al. B-ring-aryl substituted luotonin A analogues with a new binding mode to the topoisomerase 1-DNA complex show enhanced cytotoxic activity. PLoS ONE 2014, 9, e95998. [Google Scholar] [CrossRef]
- Rasapalli, S.; Huang, Y.; Sammeta, V.R.; Alshehry, R.; Anver, F.; Shivasankar, K.; Chavan, S.P. Total and Diverted Total Synthesis of Pyrrolo-Quinazolinone Alkaloids and Their Analogues. ChemistrySelect 2023, 8, e202301818. [Google Scholar] [CrossRef]
- Afanasyev, O.I.; Podyacheva, E.; Rudenko, A.; Tsygankov, A.A.; Makarova, M.; Chusov, D. Redox Condensations of o-Nitrobenzaldehydes with Amines under Mild Conditions: Total Synthesis of the Vasicinone Family. J. Org. Chem. 2020, 85, 9347–9360. [Google Scholar] [CrossRef] [PubMed]
- Nagarapu, L.; Gaikwad, H.; Bantu, R. TBAHS-Catalyzed Synthesis of 2-Dihydroquinazolin-2-ylquinoline: An Efficient and Practical Synthesis of Naturally Occurring Alkaloids Luotonin A, B, and E. Synlett 2012, 23, 1775–1778. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Li, Z.; Hu, K.; Zha, Z.; Wang, Z. Iodine-mediated electrochemical C(sp3)-H cyclization: The synthesis of quinazolinone-fused N-heterocycles. Chem. Commun. 2022, 58, 411–414. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, H.; Wang, J.; Peng, X.; Hu, C.; Luo, L. Design, synthesis, and anticancer activities of 8,9-substituted Luotonin A analogs as novel topoisomerase I inhibitors. Med. Chem. Res. 2021, 30, 1512–1522. [Google Scholar] [CrossRef]
- Rao, K.R.; Mekala, R.; Raghunadh, A.; Meruva, S.B.; Kumar, S.P.; Kalita, D.; Laxminarayana, E.; Prasad, B.; Pal, M. A catalyst-free rapid, practical and general synthesis of 2-substituted quinazolin-4(3H)-ones leading to luotonin B and E, bouchardatine and 8-norrutaecarpine. RSC Adv. 2015, 5, 61575–61579. [Google Scholar] [CrossRef]
- Ramamohan, M.; Raghavendrarao, K.; Sridhar, R.; Nagaraju, G.; Chandrasekhar, K.B.; Jayapraksh, S. A concise approach to substituted Quinazolin-4(3H)-one natural products catalyzed by Iron(III) Chloride. Tetrahedron Lett. 2016, 57, 1418–1420. [Google Scholar] [CrossRef]
- Wang, C.; Qian, P.-C.; Chen, F.; Cheng, J. Rhodium-catalyzed [4+1] annulation of sulfoxonium ylides: Sequential ortho-C H functionalization/carbonyl α-amination toward polycyclic quinazolinones. Tetrahedron Lett. 2020, 61, 152441. [Google Scholar] [CrossRef]
- Wang, R.X.; Du, S.S.; Wang, J.R.; Chu, Q.R.; Tang, C.; Zhang, Z.J.; Yang, C.J.; He, Y.H.; Li, H.X.; Wu, T.L.; et al. Design, Synthesis, and Antifungal Evaluation of Luotonin A Derivatives against Phytopathogenic Fungi. J. Agric. Food Chem. 2021, 69, 14467–14477. [Google Scholar] [CrossRef]
- Mondal, S.; Sultana, F.; Dutta, S.; Mondal, M.A. Synthesis of Luotonin and Rutaecarpine Analogues by One-Pot Intramolecular Dehydrogenative Cross-Coupling and Benzylic C−H Oxidation, and In Vitro Cytotoxicity Assay. ChemistrySelect 2023, 8, e202300980. [Google Scholar] [CrossRef]
- Kagawa, N.; Toyota, M.; Nishimura, K.; Abe, S. Concise Approach to Mono- and Disubstituted Luotonin A Analogs and Their Cytotoxicity Test. Heterocycles 2018, 97, 514–522. [Google Scholar] [CrossRef]
- Waring, A.; Toyota, M.; Komori, C.; Ihara, M. An efficient total synthesis of the pyrroquinazolinoquinoline alkaloid, Luotonin A, employing an intramolecular hetero Diels–Alder reaction. Arkivoc 2003, viii, 15–23. [Google Scholar] [CrossRef]
- Toyota, M.; Natsuki, K.; Shindo, T. Practical Total Synthesis of Luotonin A by Intramolecular Double Hetero Diels-Alder Reaction. Heterocycles 2012, 84, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Evano, G.; Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B. Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis 2018, 50, 3022–3030. [Google Scholar] [CrossRef]
- Servais, A.; Azzouz, M.; Lopes, D.; Courillon, C.; Malacria, M. Radical cyclization of N-acylcyanamides: Total synthesis of luotonin A. Angew. Chem. Int. Ed. 2007, 46, 576–579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gettler, J.; Markovič, M.; Koóš, P.; Gracza, T. Recent Advances in the Research on Luotonins A, B, and E. Molecules 2024, 29, 3522. https://doi.org/10.3390/molecules29153522
Gettler J, Markovič M, Koóš P, Gracza T. Recent Advances in the Research on Luotonins A, B, and E. Molecules. 2024; 29(15):3522. https://doi.org/10.3390/molecules29153522
Chicago/Turabian StyleGettler, Ján, Martin Markovič, Peter Koóš, and Tibor Gracza. 2024. "Recent Advances in the Research on Luotonins A, B, and E" Molecules 29, no. 15: 3522. https://doi.org/10.3390/molecules29153522
APA StyleGettler, J., Markovič, M., Koóš, P., & Gracza, T. (2024). Recent Advances in the Research on Luotonins A, B, and E. Molecules, 29(15), 3522. https://doi.org/10.3390/molecules29153522