Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization and TLC–Bioautography of Turmeric–Black Cumin Oils
2.2. Chemical Composition of Turmeric–Black Cumin Essential Oils
2.3. Free-Radical-Scavenging Activity
2.4. Inhibitory Effect of Oils on Protein Denaturation
2.5. Anticancer Activity
2.6. In Silico Molecular Docking
3. Materials and Methods
3.1. Preparation of Herbal Material
3.2. Hydro-Distillation (HD) of Turmeric–Black Cumin Combined Spice
3.3. Physicochemical Analyses of Turmeric–Black Cumin Oils
3.4. GC-MS Analysis of Turmeric–Black Cumin Oils
3.5. Free Radical Scavenging Analyses of EOs
3.5.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Spectrophotometric Assay
3.5.2. Nitric Oxide (NO) Inhibition Assay
3.5.3. Hydrogen Peroxide Inhibition Assay
3.5.4. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.6. In Vitro Anti-Inflammatory Analysis of EOs
3.7. Cytotoxicity Study
3.7.1. Cell Culture
3.7.2. MTT Assay
3.8. In Silico Molecular Docking of EO Constituents
3.8.1. Preparation and Refinement of the Protein and Ligand Structures
3.8.2. Determination of the Active Site and Molecular Docking
3.9. Statistical Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Autreaux, B.; Toledano, M.B. ROS as signaling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol Oncol. 2023, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Vinayak, M. Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma. Nutr. Cancer 2017, 69, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.A.; Okeke, B.M.; Oboh, G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases in vitro. J. Food Biochem. 2021, 45, e13276. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Diao, M.-N.; Zhang, Y.-F. A review of the occurrence, metabolites and health risks of butylated hydroxyanisole (BHA). J. Sci. Food Agric. 2023, 103, 6150–6166. [Google Scholar] [CrossRef]
- Holcomb, Z.E.; Van Noord, M.G.; Atwater, A.R. Gallate contact dermatitis: Product update and systematic review. Dermatitis 2017, 28, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Bekeschus, S.; Weltmann, K.-D.; von Woedtke, T.; Wende, K. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors. RSC Med. Chem. 2022, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xu, J.; Ke, J.; Zhang, Z.; Chu, T. S-1 and 5-Fluorouracil-related adverse events in patients with advanced gastric cancer: A meta-analysis. PLoS ONE 2023, 18, e0290003. [Google Scholar] [CrossRef] [PubMed]
- Santabarbara, G.; Maione, P.; Rossi, A.; Gridelli, C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin. Pharmacother. 2016, 17, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.M.; Taha, N.M.; Korshom, M.A.; Mandour, A.E.-W.A.; Lebda, M.A. Influence of combined administration of turmeric and black seed on selected biochemical parameters of diabetic rats. Alexandria J. Vet. Sci. 2014, 41, 19–27. [Google Scholar] [CrossRef]
- Amin, F.; Islam, N.; Anila, N.; Gilani, A.H. Clinical efficacy of the co-administration of turmeric and black seeds (Kalongi) in metabolic syndrome—A double blind randomized controlled trial—TAK-MetS trial. Complement. Ther. Med. 2015, 23, 165–174. [Google Scholar] [CrossRef]
- Amin, F.; Gilani, A.H.; Mehmood, M.H.; Siddiqui, B.S.; Khatoon, N. Co-administration of black seeds and turmeric shows enhanced efficacy in preventing metabolic syndrome in fructose-fed rats. J. Cardiovasc. Pharmacol. 2015, 65, 176–183. [Google Scholar] [CrossRef]
- Liju, V.B.; Jeena, K.; Kuttan, R. An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa L. Indian J. Pharmacol. 2011, 43, 526–531. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef]
- Rashwan, H.K.; Mahgoub, S.; Abuelezz, N.Z.; Amin, H.K. Black cumin seed (Nigella sativa) in inflammatory disorders: Therapeutic potential and promising molecular mechanisms. Drugs Drug Candidates 2023, 2, 516–537. [Google Scholar] [CrossRef]
- Adodo, A.; Iwu, M.M. Healing Plants of Nigeria: Ethnomedicine and Therapeutic Applications; CRC Press, Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2020; ISBN 978-0-429-44092-2. [Google Scholar]
- Roney, M.; Mohd Aluwi, M.F.F. The importance of in silico studies in drug discovery. Intell. Pharm. 2024. [Google Scholar] [CrossRef]
- Akhlaq Akhoon, B.; Tiwari, H.; Nargotra, A. Chapter 3—In silico drug design methods for drug repurposing. In In Silico Drug Design; Roy, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 47–84. [Google Scholar] [CrossRef]
- Nocella, C.; D’Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; et al. Structure, activation, and regulation of NOX2: At the crossroad between the innate immunity and oxidative stress-mediated pathologies. Antioxidants 2023, 12, 429. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. MedComm 2021, 2, 618–653. [Google Scholar] [CrossRef]
- Bang, S.; Kaur, S.; Kurokawa, M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int. J. Mol. Sci. 2020, 21, 261. [Google Scholar] [CrossRef]
- Filatov, V.A.; Ilin, E.A.; Kulyak, O.Y.; Kalenikova, E.I. Development and validation of a gas chromatography-mass spectrometry method for the analysis of the novel plant-based substance with antimicrobial activity. Antibiotics 2023, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Ajaiyeoba, E.O.; Sama, W.; Essien, E.E.; Olayemi, J.O.; Ekundayo, O.; Walker, T.M.; Setzer, W.N. Larvicidal activity of turmerone-rich essential oils of Curcuma longa leaf and rhizome from Nigeria on Anopheles gambiae. Pharm. Biol. 2008, 46, 279–282. [Google Scholar] [CrossRef]
- Setzer, W.N.; Duong, L.; Poudel, A.; Mentreddy, S.R. Variation in the chemical composition of five varieties of Curcuma longa rhizome essential oils cultivated in North Alabama. Foods 2021, 10, 212. [Google Scholar] [CrossRef]
- Oyemitan, I.A.; Elusiyan, C.A.; Onifade, A.O.; Akanmu, M.A.; Oyedeji, A.O.; McDonald, A.G. Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol. Rep. 2017, 4, 391–398. [Google Scholar] [CrossRef]
- Abera, S.; Hirko, B. Chemical composition of essential oils of released black cumin varieties grown in Ethiopia. Chem. Mat. Res. 2020, 12, 9–14. [Google Scholar] [CrossRef]
- Verpoorte, R.; Kim, H.K.; Choi, Y.H. Trivialities in metabolomics: Artifacts in extraction and analysis. Front. Mol. Biosci. 2022, 9, 972190. [Google Scholar] [CrossRef]
- Amin, S.; Mir, S.R.; Kohli, K.; Ali, B.; Ali, M. A study of the chemical composition of black cumin oil and its effect on penetration enhancement from transdermal formulations. Nat. Prod. Res. 2010, 24, 1151–1157. [Google Scholar] [CrossRef]
- NIST Mass Spectrometry Data Center; Wallace, W.E. Mass Spectra. In NIST Chemistry WebBook; Linstrom, P.J., Mallard, W.G., Eds.; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Fahmy, N.M.; Fayez, S.; Uba, A.I.; Shariati, M.A.; Aljohani, A.S.M.; El-Ashmawy, I.M.; Batiha, G.E.-S.; Eldahshan, O.A.; Singab, A.N.; Zengin, G. Comparative GC-MS analysis of fresh and dried Curcuma essential oils with insights into their antioxidant and enzyme inhibitory activities. Plants 2023, 12, 1785. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Anouar, E.; Calliste, C.A.; Košinová, P.; Di Meo, F.; Duroux, J.L.; Champavier, Y.; Marakchi, K.; Trouillas, P. Free radical scavenging properties of guaiacol oligomers: A combined experimental and quantum study of the guaiacyl-moiety role. J. Phys Chem. A 2009, 113, 13881–13891. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Y.; Shi, J.; Mohamed, S.R.; Xu, J.; Liu, X. The antioxidant guaiacol exerts fungicidal activity against fungal growth and deoxynivalenol production in Fusarium graminearum. Front. Microbiol. 2021, 12, 762844. [Google Scholar] [CrossRef]
- Osman, N.I.; Sidik, N.J.; Awal, A.; Adam, N.A.; Rezali, N.I. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult Ethnopharmacol. 2016, 5, 343–349. [Google Scholar] [CrossRef]
- Banerjee, S.; Chanda, A.; Adhikari, A.; Das, A.; Biswas, S. Evaluation of phytochemical screening and anti-inflammatory activity of leaves and stem of Mikania scandens (L.) Wild. Ann. Med. Health Sci. Res. 2014, 4, 532–536. [Google Scholar] [CrossRef]
- Chaiya, P.; Senarat, S.; Phaechamud, T.; Narakornwit, W. In vitro anti-inflammatory activity using thermally inhibiting protein denaturation of egg albumin and antimicrobial activities of some organic solvents. Mat. Today Proc. 2022, 65, 2290–2295. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Jiao, J.; Jiao, L. Ar-Turmerone exerts anti-proliferative and anti-inflammatory activities in HaCaT keratinocytes by inactivating Hedgehog pathway. Inflammation 2020, 43, 478–486. [Google Scholar] [CrossRef]
- Zhao, D.R.; Jiang, Y.S.; Sun, J.Y.; Li, H.H.; Luo, X.L.; Zhao, M.M. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-induced inflammation in THP-1 cells. J. Agric Food Chem. 2019, 67, 1230–1243. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-prot095505. [Google Scholar] [CrossRef]
- Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. Nigella sativa (black seed) safety: An overview. Asian Biomed. (Res. Rev. News) 2020, 14, 127–137. [Google Scholar] [CrossRef]
- Yan, W.; Bowen, W.D.; Hopson, R.; Mathew, A.E.; Jacob, J.N. Biological studies of Turmeric oil, part 2: Isolation and characterization of Turmeric oil components; cytotoxic activity against pancreatic cancer cells. Nat. Prod. Comm. 2013, 8, 811–814. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac. J. Cancer Prev. 2014, 15, 983–987. [Google Scholar] [CrossRef]
- Girima, N.; Devendra, K.B. Alleviation of lindane induced toxicity in testis of Swiss mice by combined treatment with vitamin C, vitamin E and α-lipoic acid. Indian J. Exp. Biol. 2011, 49, 191–199. [Google Scholar]
- Banerjee, S.; Kar, P.; Islam, R.; Naidoo, D.; Roy, A.; Sarkar, I.; Sen, G.; Saha, T.; Yasmin, H.; Sen, A. Synthesis of silver nanoparticles from secondary metabolites of star gooseberry fruit (Phyllanthus acidus) and their nephroprotective efficiency. S. Afr. J. Bot. 2022, 151, 385–395. [Google Scholar] [CrossRef]
- Hassell, A.M.; An, G.; Bledsoe, R.K.; Bynum, J.M.; Carter, H.L., III; Deng, S.J.; Gampe, R.T.; Grisard, T.E.; Madauss, K.P.; Nolte, R.T.; et al. Crystallization of protein-ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63, 72–79. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, Y. Cytotoxic activity from Curcuma zedoaria through mitochondrial activation on ovarian cancer cells. Toxicol. Res. 2013, 29, 257–261. [Google Scholar] [CrossRef]
- Oyedeji, O.O.; Oyedeji, A.O.; Shode, F.O. Compositional variations and antibacterial activities of the essential oils of three Melaleuca species from South Africa. J. Essent. Oil-Bear. Plants 2014, 17, 265–276. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Y.-D.; Tang, F.; Sun, J. TLC screening for antioxidant activity of extracts from fifteen bamboo species and identification of antioxidant flavone glycosides from leaves of Bambusa textilis McClure. Molecules 2012, 17, 12297–12311. [Google Scholar] [CrossRef]
- Miya, G.; Nyalambisa, M.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical profiling, toxicity and anti-inflammatory activities of essential oils from three grapefruit cultivars from KwaZulu-Natal in South Africa. Molecules 2021, 26, 3387. [Google Scholar] [CrossRef] [PubMed]
- Oriola, A.O.; Aladesanmi, A.J.; Idowu, T.O.; Akinwumi, F.O.; Obuotor, E.M.; Idowu, T.; Oyedeji, A.O. Ursane-type triterpenes, phenolics and phenolic derivatives from Globimetula braunii leaf. Molecules 2021, 26, 6528. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Sci. Rep. 2019, 9, 12965. [Google Scholar] [CrossRef]
- Okeleye, B.I.; Nongogo, V.; Mkwetshana, N.T.; Ndip, R.N. Polyphenolic content and in vitro antioxidant evaluation of the stem bark extract of Peltophorum africanum Sond (Fabaceae). Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 1–8. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chandra, S.; Dey, P.; Bhattacharya, S. Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study. J. Adv. Pharm. Technol. Res. 2012, 3, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Jagaran, K.; Singh, M. Copolymer-green-synthesized copper oxide nanoparticles enhance folate-targeting in cervical cancer cells in vitro. Polymers 2023, 15, 2393. [Google Scholar] [CrossRef]
- Noreng, S.; Ota, N.; Sun, Y.; Ho, H.; Johnson, M.; Arthur, C.P.; Schneider, K.; Lehoux, I.; Davies, C.W.; Mortara, K.; et al. Structure of the core human NADPH oxidase NOX2. Nat. Commun. 2022, 13, 6079. [Google Scholar] [CrossRef]
- Ghosh, G.; Duyne, G.V.; Ghosh, S.; Sigler, P.B. Structure of NF-κB p50 homodimer bound to a κB site. Nature 1995, 373, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Naito, H.; Sugimoto, Y.; Yoshida, K.; Kawato, H.; Okayama, T.; Shimizu, H.; Miyazaki, M.; Kitagawa, M.; Seki, T.; et al. Synthesis and evaluation of novel orally active p53–MDM2 interaction inhibitors. Bioorg. Med. Chem. 2013, 21, 4319–4331. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminf. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Sch€uttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for highthroughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sudom, A.; Min, X.; Cao, Z.; Gao, X.; Ayres, M.; Lee, F.; Cao, P.; Johnstone, S.; Wang, Z.; et al. Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J. Biol. Chem. 2012, 287, 27326–27334. [Google Scholar] [CrossRef] [PubMed]
- Binkowski, T.A.; Naghibzadeh, S.; Liang, J. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2003, 31, 3352–3355. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.; Sharma, N.R.; Singh, B.; Sen, A.; Roy, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J. Biomol. Struct. Dyn. 2021, 39, 4774–4785. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.; Kumar, V.; Vellingiri, B.; Sen, A.; Jaishee, N.; Anandraj, A.; Subramaniam, M.D. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: A computational investigation. J. Biomol. Struct. Dyn. 2022, 40, 4532–4542. [Google Scholar] [CrossRef]
- Kar, P.; Saleh-E-In, M.M.; Jaishee, N.; Anandraj, A.; Kormuth, E.; Vellingiri, B.; Angione, C.; Rahman, P.K.S.M.; Pillay, S.; Sen, A.; et al. Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS-CoV-2 wild-type and the variants of concern, viral cell-entry process, and cytokine storm in COVID-19. J. Cell. Biochem. 2022, 123, 964–986. [Google Scholar] [CrossRef]
Essential Oil | Color | Sensory Characteristics | % Yield |
---|---|---|---|
I | Yellow | Earthy, woody | 0.35 |
II | Golden yellow | Earthy, woody | 0.39 |
III | Red | Earthy, woody, roasty | 0.41 |
IV | Reddish brown | Earthy, woody, nutty, roasty | 0.43 |
V | Reddish brown | Woody, nutty, roasty | 0.33 |
VI | Dark brown | Woody, nutty, smoky | 0.25 |
S/N | Major Essential Oil Constituent | tR (min) | KI a | KI [36,37,38] | % Composition of Oil | |||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |||||
1 | α-Phellandrene | 11.59 | 1004 | 1003 | - | - | 1.17 | - | - | - |
2 | p-Cymene | 12.35 | 1022 | 1020 | 4.38 | - | - | - | - | - |
3 | o-Cymene | 12.40 | 1025 | 1022 | 2.29 | 1.13 | - | - | - | - |
4 | p-Cresol | 12.51 | 1074 | 1071 | - | - | 13.28 | - | - | - |
5 | o-Guaiacol | 12.60 | 1090 | 1087 | - | - | - | - | - | 37.12 |
6 | Trans-4-methoxy thujane | 15.68 | 1124 | 1120 | 0.99 | - | - | - | - | - |
7 | 4-Methyl-1-(1-methylethyl)-3-cyclohexenol | 17.58 | 1176 | 1171 | 2.26 | - | - | - | - | - |
8 | p-Thymol | 21.27 | 1334 | 1332 | 1.27 | - | - | - | - | - |
9 | 2-epi-α-Funebrene | 22.63 | 1385 | 1380 | 0.82 | - | - | - | - | - |
10 | Ar-Curcumene | 26.33 | 1481 | 1480 | 4.01 | - | - | - | - | - |
11 | δ-Curcumene | 26.57 | 1483 | 1486 | 1.04 | - | - | - | - | - |
12 | β-Sesquiphellandrene | 27.03 | 1523 | 1521 | 2.43 | - | - | - | - | - |
13 | Ar-Turmerol | 28.34 | 1580 | 1582 | - | 1.85 | - | - | - | - |
14 | Ar-Turmerone | 30.39 | 1673 | 1672 | 17.17 | 46.39 | 54.88 | 59.61 | 91.97 | 58.82 |
15 | α-Turmerone | 31.15 | 1683 | 1680 | 9.21 | 18.22 | 7.13 | - | - | - |
16 | Curlone | 31.19 | 1701 | 1701 | 8.53 | 22.29 | 17.37 | 31.31 | - | - |
17 | (Z)-γ-Atlantone | 31.24 | 1744 | 1706 | 0.50 | - | - | - | - | - |
18 | (Z)-α-Atlantone | 31.42 | 1720 | 1717 | 0.53 | 0.50 | - | - | - | - |
19 | (E)-α-Atlantone | 32.70 | 1777 | 1773 | 2.18 | 2.51 | 2.46 | - | - | - |
20 | Palmitic acid | 36.86 | 1969 | 1965 | 29.21 | - | - | - | - | - |
21 | Oleic acid | 39.83 | 2142 | 2140 | 7.79 | - | - | - | - | - |
22 | Stearic acid | 40.17 | 2180 | 2177 | 1.43 | - | - | - | - | - |
Total | 96.04 | 92.89 | 96.29 | 90.92 | 91.97 | 95.94 |
Essential Oil | IC50 ± S.D. (µg/mL) | FRAP (mgAAE/g ± S.D.) | ||
---|---|---|---|---|
DPPH | H2O2 | NO | ||
I | 63.29 ± 2.08 | 75.88 ± 4.15 | 41.62 ± 3.01 | 331.72 ± 23.79 |
II | 30.41 ± 1.64 | 55.70 ± 2.72 | 49.83 ± 2.14 | 476.08 ± 34.04 |
III | 33.15 ± 3.06 | 26.91 ± 2.16 | 20.49 ± 1.48 | 519.67 ± 18.25 |
IV | 44.92 ± 2.55 | 30.24 ± 1.86 | 21.71 ± 2.62 * | 488.63 ± 27.12 |
V | 35.47 ± 2.21 | 32.41 ± 2.30 | 28.30 ± 2.55 | 451.85 ± 20.93 |
VI | 14.14 ± 1.63 * | 12.69 ± 1.55 * | 22.36 ± 1.10 * | 679.20 ± 31.37 ** |
Turmeric oil | 30.19 ± 2.44 | 28.64 ± 1.75 | 26.79 ± 1.44 | 535.10 ± 12.33 |
Black cumin oil | 61.58 ± 2.13 | 41.53 ± 2.62 | 43.56 ± 3.30 | 288.68 ± 17.05 |
L-ascorbic acid | 8.91 ± 1.07 * | 9.01 ± 0.81 * | 11.49 ± 1.08 * | NA |
Essential Oil | CC50 ± S.D. (µg/100 µL) | ||
---|---|---|---|
HEK293 | HepG2 | HeLa | |
I | 38.96 ± 2.02 | 12.77 ± 2.38 b | 17.53 ± 1.11 * |
II | 58.84 ± 3.18 | 26.30 ± 1.88 f | 28.92 ± 2.68 |
III | 41.42 ± 2.62 | 32.18 ± 2.09 g | 39.74 ± 3.13 |
IV | 76.60 ± 3.55 | 31.05 ± 2.61 g | 25.07 ± 2.06 |
V | 47.06 ± 2.41 | 18.72 ± 1.17 c | 23.51 ± 2.12 |
VI | 46.98 ± 1.80 | 10.16 ± 1.69 ab | 14.83 ± 2.05 * |
Turmeric oil | 42.97 ± 2.26 | 21.79 ± 1.01 d | 22.07 ± 2.22 |
Black cumin oil | 37.16 ± 2.17 * | 24.43 ± 1.64 e | 29.48 ± 2.57 |
5-Fluorouracil | 16.18 ± 1.43 * | 8.59 ± 1.33 a | 9.71 ± 1.25 * |
Essential Oil Compounds | Binding Energy Score kcal/mol | ||
---|---|---|---|
NOX 2 | NF-κβ | mdm2 | |
α-Phellandrene | −7.1 | −4.9 | −6.3 |
p-Cymene | −7.1 | −4.8 | −5.5 |
o-Cymene | −6.9 | −5.1 | −5.1 |
p-Cresol | −6.5 | −4.2 | −5.8 |
o-Guaiacol | −5.2 | −4.5 | −4.4 |
Trans-4-methoxy thujane | −5.4 | −4.7 | −4.2 |
4-Methyl-1-(1-methylethyl)-3-cyclohexenol | −5.7 | −5.5 | −6.0 |
p-Thymol | −5.5 | −5.8 | −4.5 |
2-epi-α-Funebrene | −7.3 | −5.6 | −6.9 |
Ar-Curcumene | −8.0 | −6.1 | −7.1 |
δ-Curcumene | −7.8 | −8.1 | −8.5 |
β-Sesquiphellandrene | −7.4 | −6.2 | −6.8 |
Ar-Turmerol | −7.5 | −5.8 | −6.5 |
Ar-Turmerone | −7.5 | −5.7 | −6.1 |
α-Turmerone | −7.2 | −5.3 | −6.5 |
Curlone | −7.1 | −5.7 | −5.1 |
(Z)-γ-Atlantone | −7.2 | −6.2 | −6.2 |
(Z)-α-Atlantone | −6.9 | −5.8 | −5.2 |
(E)-α-Atlantone | −7.5 | −5.3 | −4.9 |
Palmitic acid | −5.8 | −4.7 | −4.5 |
Oleic acid | −5.1 | −4.1 | −4.3 |
Stearic acid | −5.5 | −4.3 | −4.7 |
Standard | L-ascorbic acid (−5.7) | Diclofenac (−5.9) | 5-Fluorouracil (−4.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oriola, A.O. Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation. Molecules 2024, 29, 3523. https://doi.org/10.3390/molecules29153523
Oriola AO. Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation. Molecules. 2024; 29(15):3523. https://doi.org/10.3390/molecules29153523
Chicago/Turabian StyleOriola, Ayodeji Oluwabunmi. 2024. "Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation" Molecules 29, no. 15: 3523. https://doi.org/10.3390/molecules29153523
APA StyleOriola, A. O. (2024). Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation. Molecules, 29(15), 3523. https://doi.org/10.3390/molecules29153523