Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD
2.2. FTIR
2.3. BET
2.4. HIM
2.5. DLS
2.6. Oil Number
2.7. Color Analysis
3. Materials and Methods
3.1. Materials
3.2. Pigment Preparation
3.3. Methods
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carneiro, J.; Tobaldi, D.M.; Capela, M.N.; Novais, R.M.; Seabra, M.P.; Labrincha, J.A. Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Manag. 2018, 80, 371–378. [Google Scholar] [CrossRef]
- Luo, X.; Liang, C.; Hu, Y. Comparison of Different Enhanced Coagulation Methods for Azo Dye Removal from Wastewater. Sustainability 2019, 11, 4760. [Google Scholar] [CrossRef]
- Khanam, J.; Hasan, M.R.; Biswas, B.; Jahan, S.A.; Sharmin, N.; Ahmed, S.; Al-Reza, S.M. Development of ceramic grade red iron oxide pigment from waste iron source. Heliyon 2023, 9, e12854. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, J.; Wang, W.; Wang, T.; Zong, L.; Wang, A. Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Adv. Powder Technol. 2020, 31, 2276–2284. [Google Scholar] [CrossRef]
- Epikhin, A.N.; Krylova, A.V. Preparation of iron oxide pigments for mineral paints from solid iron-containing waste. Russ. J. Appl. Chem. 2003, 76, 20–22. [Google Scholar] [CrossRef]
- Legodi, M.A.; de Waal, D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dye. Pigment. 2007, 74, 161–168. [Google Scholar] [CrossRef]
- Potthast, A.; Henniges, U.; Banik, G. Iron gall ink-induced corrosion of cellulose: Aging, degradation and stabilization. Part 1: Model paper studies. Cellulose 2008, 15, 849–859. [Google Scholar] [CrossRef]
- Gong, L.; Hua, X.; Yao, B.; Liang, J.; Tian, G. Novel red composite pigment with high thermostability from iron ore tailings: Synthesis and coloring mechanism. Ceram. Int. 2023, 49, 5066–5076. [Google Scholar] [CrossRef]
- Kida, K.; Potthast, A.; Inaba, M.; Hayakawa, N. The Effect of Iron Ions from Prussian Blue Pigment on the Deterioration of Japanese Paper. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2015, 36, 251–267. [Google Scholar] [CrossRef]
- Uk Lee, K.; Ju Park, K.; Ho Kim, M.; Kwon, O.J.; Kim, J.J. Preparation of the carbon sphere coated with iron oxide and its application for electronic paper. Dye. Pigment. 2014, 102, 22–28. [Google Scholar] [CrossRef]
- Liang, S.T.; Liu, J. Colorful liquid metal printed electronics. Sci. China Technol. Sci. 2018, 61, 110–116. [Google Scholar] [CrossRef]
- Gsänger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Organic Semiconductors based on Dyes and Color Pigments. Adv. Mater. 2016, 28, 3615–3645. [Google Scholar] [CrossRef]
- Han, Y.; Shan, M.; Lu, Y.; Liu, S. Preparation of Palygorskite hybrid iron oxide red pigment and its application in waterborne polyurethane composite coatings and ceramics. Mater. Res. Express. 2022, 9, 065202. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Wang, W.; Wang, Q.; Hui, A.; Wang, A. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments. Appl. Clay Sci. 2019, 167, 50–59. [Google Scholar] [CrossRef]
- Pérez-Arantegui, J. Not only wall paintings—Pigments for cosmetics. Archaeol. Anthropol. Sci. 2021, 13, 189. [Google Scholar] [CrossRef]
- Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Gadri, A.; Ammar, S. Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base. J. Mol. Struct. 2017, 1141, 99–106. [Google Scholar] [CrossRef]
- Supattarasakda, K.; Petcharoen, K.; Permpool, T.; Sirivat, A.; Lerdwijitjarud, W. Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol. 2013, 249, 353–359. [Google Scholar] [CrossRef]
- Riveros, P.A.; Dutrizac, J.E. The precipitation of hematite from ferric chloride media. Hydrometallurgy 1997, 46, 85–104. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, S.; Lin, Q.; Song, D.; He, Y.; Liu, L.; Zhou, J.; Zong, M.; De Yoreo, J.J.; Zhu, J.; et al. Particle-based hematite crystallization is invariant to initial particle morphology. Proc. Natl. Acad. Sci. USA 2022, 119, e2112679119. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, H.; Peng, T.; Liu, C.; Yang, S. Influences of starch depressant with the various molecular structure on the interactions between hematite particles and flotation bubbles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129814. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Asimakidou, T.; Makridis, A.; Veintemillas-Verdaguer, S.; Morales, M.P.; Kellartzis, I.; Mitrakas, M.; Vourlias, G.; Angelakeris, M.; Simeonidis, K. Continuous production of magnetic iron oxide nanocrystals by oxidative precipitation. Chem. Eng. J. 2020, 393, 124593. [Google Scholar] [CrossRef]
- Besenhard, M.O.; LaGrow, A.P.; Hodzic, A.; Kriechbaum, M.; Panariello, L.; Bais, G.; Loizou, K.; Damilos, S.; Margarida Cruz, M.; Thanh, N.T.K.; et al. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 2020, 399, 125740. [Google Scholar] [CrossRef]
- Ullrich, A.; Rahman, M.M.; Azhar, A.; Kühn, M.; Albrecht, M. Synthesis of iron oxide nanoparticles by decomposition of iron-oleate: Influence of the heating rate on the particle size. J. Nanoparticle Res. 2022, 24, 183. [Google Scholar] [CrossRef]
- Wu, X.; Lee, B.; Jun, Y.S. Interfacial and Activation Energies of Environmentally Abundant Heterogeneously Nucleated Iron(III) (Hydr)oxide on Quartz. Environ. Sci. Technol. 2020, 54, 12119–12129. [Google Scholar] [CrossRef]
- Chong, E.; Marak, K.E.; Li, Y.; Freedman, M.A. Ice nucleation activity of iron oxides via immersion freezing and an examination of the high ice nucleation activity of FeO. Phys. Chem. Chem. Phys. 2021, 23, 3565–3573. [Google Scholar] [CrossRef] [PubMed]
- Lukić, M.J.; Gebauer, D.; Rose, A. Nonclassical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides. Curr. Opin. Colloid Interface Sci. 2020, 46, 114–127. [Google Scholar] [CrossRef]
- Dairong, S.Z.; Chen, X.J.; Liu, S. Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibres using sol-gel combined co-electrospinning technology. J. Colloid Interface Sci. 2007, 308, 265–270. [Google Scholar]
- Liu, X.; Gao, P.; Yuan, S.; Lv, Y.; Han, Y. Clean utilization of high-iron red mud by suspension magnetization roasting. Miner. Eng. 2020, 157, 106553. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Y.; Li, P.; Zhang, Y.; Sun, Y. Catalytic synthesis of nanosized hematite particles in solution. Mater. Chem. Phys. 2007, 102, 1–6. [Google Scholar] [CrossRef]
- Su, C.; Wang, H.; Liu, X. Controllable fabrication and growth mechanism of hematite cubes. Cryst. Res. Technol. 2011, 46, 209–214. [Google Scholar] [CrossRef]
- Ajinkya, N.; Yu, X.; Kaithal, P.; Luo, H.; Somani, P.; Ramakrishna, S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials 2020, 13, 4644. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, Y. A review of the α-Fe2O3 (hematite) nanotube structure: Recent advances in synthesis, characterization, and applications. Nanoscale 2020, 12, 10912–10932. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater. 2007, 309, 307–311. [Google Scholar] [CrossRef]
- Çanakçi, D. Sol-gel synthesis and characterization of new inorganic pigments containing oxides of iron, aluminum, strontium, and silicate. Hacet. J. Biol. Chem. 2021, 49, 185–200. [Google Scholar] [CrossRef]
- Zhao, X.; Yim, C.-H.; Du, N.; al Besekar, N.; Bhattacharyya, B.; Berkh, O.; Khatchatouriants, A.; Eliaz, N.; Maulidina, H.; Arilasita, R.; et al. Citric acid concentration tune of structural and magnetic properties in hematite (α−Fe2O3) nanoparticles synthesized by sol−gel method. Mater. Res. Express 2023, 10, 036101. [Google Scholar]
- Paulson, E.; Jothibas, M. Significance of thermal interfacing in hematite (α-Fe2O3) nanoparticles synthesized by sol-gel method and its characteristics properties. Surf. Interfaces 2021, 26, 101432. [Google Scholar] [CrossRef]
- Jegadeeswari, A.; Punitha, T. Synthesis and characterization of iron Oxide (hematite) nanoparticles by sol-gel method. Nanoscale Rep. 2020, 3, 33–36. [Google Scholar] [CrossRef]
- Borges, R.; Mendonça-Ferreira, L.; Rettori, C.; Pereira, I.S.O.; Baino, F.; Marchi, J. New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application. Mater. Sci. Eng. C 2021, 120, 111692. [Google Scholar] [CrossRef]
- Tahir, M.; Fakhar-e-Alam, M.; Atif, M.; Mustafa, G.; Ali, Z. Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. J. King Saud Univ. Sci. 2023, 35, 102695. [Google Scholar] [CrossRef]
- Hjiri, M. Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique. J. Mater. Sci. Mater. Electron. 2020, 31, 5025–5031. [Google Scholar] [CrossRef]
- Kozakova, Z.; Kuritka, I.; Kazantseva, N.E.; Babayan, V.; Pastorek, M.; Machovsky, M.; Bazant, P.; Saha, P. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Trans. 2015, 44, 21099–21108. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Ibrahim, A.A.; Kumar, R.; Albargi, H.; Alsaiari, M.A.; Ahmed, F. Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sens. Actuators B Chem. 2021, 326, 128851. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmed, F.; Khan, M.U.A.; Aljaafari, A.; Manickam, S.; Show, P.L. Morphological evaluation of hematite nanostructures and their shape dependent photocatalytic and magnetic properties. Chem. Eng. Process. Process Intensif. 2022, 175, 108909. [Google Scholar] [CrossRef]
- Mallesh, S.; Narsimulu, D.; Kim, K.H. High coercivity in α-Fe2O3 nanostructures synthesized by surfactant-free microwave-assisted solvothermal method. Phys. Lett. A 2020, 384, 126038. [Google Scholar] [CrossRef]
- Platnich, C.M.; Slaby, J.S.; O’Connell, D.; Trudel, S. Simple solvothermal approach to highly nanostructured hematite thin films. Can. J. Chem. 2020, 99, 355–361. [Google Scholar] [CrossRef]
- Niu, Y.; Yuan, Y.; Zhang, Q.; Chang, F.; Yang, L.; Chen, Z.; Bai, Z. Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy 2021, 82, 105699. [Google Scholar] [CrossRef]
- Li, S.; Zhang, T.; Tang, R.; Qiu, H.; Wang, C.; Zhou, Z. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 2015, 379, 226–231. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, J.; Zhao, L.; Wang, F.; He, H.; Dramou, P. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. J. Phys. Chem. Solids 2022, 169, 110855. [Google Scholar] [CrossRef]
- Splinter, K.; Lendzion-Bieluń, Z. A study of the influence of synthesis parameters on the physicochemical properties of iron pigments produced from waste iron sulfate. Chem. Process Eng. New Front. 2023, 44, e12. [Google Scholar] [CrossRef]
- Anju; Agarwal, A.; Aghamkar, P.; Lal, B. Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method. J. Magn. Magn. Mater. 2017, 426, 800–805. [Google Scholar] [CrossRef]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Chandel, S.; Thakur, P.; Tomar, M.; Gupta, V.; Thakur, A. Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 2017, 43, 13750–13758. [Google Scholar] [CrossRef]
- Weng, X.; Ma, L.; Guo, M.; Su, Y.; Dharmarajan, R.; Chen, Z. Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by euphorbia cochinchinensis extract. Chem. Eng. J. 2018, 353, 482–489. [Google Scholar] [CrossRef]
- Peng, W.; Zhu, S.; Wang, W.; Zhang, W.; Gu, J.; Hu, X.; Zhang, D.; Chen, Z. 3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates. Adv. Funct. Mater. 2012, 22, 2072–2080. [Google Scholar] [CrossRef]
- Novoselova, L.Y. Nanoscale magnetite: New synthesis approach, structure and properties. Appl. Surf. Sci. 2020, 539, 148275. [Google Scholar] [CrossRef]
- Chen, S.; Vahur, S.; Teearu, A.; Juus, T.; Zhilin, M.; Savchenko, S.; Oshibkina, S.; Asheichyk, V.; Vashanau, A.; Lychagina, E.; et al. Classification of archaeological adhesives from Eastern Europe and Urals by ATR-FT-IR spectroscopy and chemometric analysis. Archaeometry 2022, 64, 227–244. [Google Scholar] [CrossRef]
- Khorshidi, N.; Azadmehr, A.R. Competitive adsorption of Cd (II) and Pb (II) ions from aqueous solution onto iranian hematite (Sangan mine): Optimum condition and adsorption isotherm study. Desalination Water Treat. 2017, 58, 106–119. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Shiva Prasad, K.; Krishna Chaitanya, V.; Babu, E.V.S.S.K.; Sreedhar, B.; Ramana Murthy, S. In situ FTIR study on the dehydration of natural goethite. J. Asian Earth Sci. 2006, 27, 503–511. [Google Scholar] [CrossRef]
- Tammekivi, E.; Vahur, S.; Vilbaste, M.; Leito, I. Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios. Molecules 2021, 26, 2218. [Google Scholar] [CrossRef]
- Ventura, G.D.; Ventruti, G.; Bellatreccia, F.; Scordari, F.; Guidi, M.C. FTIR transmission spectroscopy of sideronatrite, a sodium-iron hydrous sulfate. Miner. Mag. 2013, 77, 499–507. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. (Eds.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2014. [Google Scholar]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Splinter, K.; Moszyński, D.; Lendzion-Bieluń, Z. Microwave-Reactor-Based Preparation of Red Iron Oxide Pigment from Waste Iron Sulfate. Materials 2023, 16, 3242. [Google Scholar] [CrossRef] [PubMed]
- Color Converter. Available online: https://www.nixsensor.com/free-color-converter/ (accessed on 20 May 2024).
- Splinter, K.; Lendzion-Bieluń, Z. Otrzymywanie pigmentów żelazowych na bazie odpadowego siarczanu(VI) żelaza(II). In Postępy w Technologii i Inżynierii Chemicznej; Ledzion-Bieluń, Z., Moszyński, D., Eds.; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, Poland, 2021; pp. 240–249. [Google Scholar]
- Splinter, K.; Lendzion-Bieluń, Z.; Wojciechowska, A. Method of Producing Iron Pigments. PL437851A1, Issued 2021. Patent: Pat. 245453. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.437851 (accessed on 23 July 2024).
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Hlawacek, G.; Veligura, V.; van Gastel, R.; Poelsema, B. Helium ion microscopy. J. Vac. Sci. Technol. B 2014, 32, 020801. [Google Scholar] [CrossRef]
- Boden, S.A. Introduction to Imaging Techniques in the HIM. In Helium Ion Microscopy; NanoScience and Technology; Springer: Cham, Switzerland, 2016; pp. 149–172. [Google Scholar]
- Gölzhäuser, A.; Hlawacek, G. HIM of Biological Samples. In Helium Ion Microscopy; NanoScience and Technology; Springer: Cham, Switzerland, 2016; pp. 173–185. [Google Scholar]
- PN-EN ISO 787-5:1999; Ogólne Metody Badań Pigmentów i Wypełniaczy. Oznaczanie Liczby Olejowej. Polish Committee for Standardization: Warsaw, Poland, 1999.
- Durmus, D. CIELAB color space boundaries under theoretical spectra and 99 test color samples. Color Res. Appl. 2020, 45, 796–802. [Google Scholar] [CrossRef]
Sample ID | Phase | Content [wt%] | Crystallite Size [nm] |
---|---|---|---|
8 H2O2 NH3 | Hematite | 100 | 50 |
8 H2O2 NaOH | Hematite | 100 | 30 |
8 air NH3 | Hematite | 85 | 110 |
Magnetite | 15 | 29 | |
8 air NaOH | Hematite | 100 | 62 |
10 H2O2 NH3 | Goethite | 2 | 11 |
Hematite | 98 | 63 | |
10 H2O2 NaOH | Goethite | 2 | 22 |
Hematite | 98 | 73 | |
10 air NH3 | Hematite | 98 | 55 |
Magnetite | 2 | 68 | |
10 air NaOH | Hematite | 100 | 25 |
12 H2O2 NaOH | Goethite | 4 | 40 |
Hematite | 96 | 60 | |
12 air NaOH | Na2SO4 | 7 | - |
Hematite | 32 | 144 | |
Magnetite | 61 | 9 |
Sample | L | a | b | ΔE | Color Codes (HEX) | Color |
---|---|---|---|---|---|---|
8 H2O2 NH3 | 35.4 | 49.5 | 18.2 | 82.8 | 9A243A | |
8 H2O2 NaOH | 36.0 | 47.2 | 17.0 | 80.8 | 992A3D | |
8 air NH3 | 19.9 | 30.7 | 18.5 | 87.1 | 5A1817 | |
8 air NaOH | 29.8 | 42.2 | 15.7 | 82.8 | 802231 | |
10 H2O2 NH3 | 35.5 | 25.6 | 11.5 | 69.6 | 7C4243 | |
10 H2O2 NaOH | 37.0 | 32.5 | 11.5 | 71.2 | 893F46 | |
10 air NH3 | 22.7 | 15.8 | 11.5 | 79.0 | 4F2D26 | |
10 air NaOH | 31.2 | 27.8 | 11.6 | 74.4 | 733639 | |
12 H2O2 NaOH | 29.6 | 37.2 | 11.3 | 79.8 | 7A2836 | |
12 air NaOH | 19.8 | 40.8 | 15.5 | 90.7 | 64021C |
Sample ID | Oxidation Agent Used | Precipitation Agent Used | pH |
---|---|---|---|
8 H2O2 NH3 | Hydrogen peroxide | Ammonia solution | 8 |
8 H2O2 NaOH | Hydrogen peroxide | Sodium hydroxide | 8 |
8 air NH3 | Air | Ammonia solution | 8 |
8 air NaOH | Air | Sodium hydroxide | 8 |
10 H2O2 NH3 | Hydrogen peroxide | Ammonia solution | 10 |
10 H2O2 NaOH | Hydrogen peroxide | Sodium hydroxide | 10 |
10 air NH3 | Air | Ammonia solution | 10 |
10 air NaOH | Air | Sodium hydroxide | 10 |
12 H2O2 NaOH | Hydrogen peroxide | Sodium hydroxide | 12 |
12 air NaOH | Air | Sodium hydroxide | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Splinter, K.; Möckel, R.; Hlawacek, G.; Lendzion-Bieluń, Z. Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate. Molecules 2024, 29, 3527. https://doi.org/10.3390/molecules29153527
Splinter K, Möckel R, Hlawacek G, Lendzion-Bieluń Z. Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate. Molecules. 2024; 29(15):3527. https://doi.org/10.3390/molecules29153527
Chicago/Turabian StyleSplinter, Kamila, Robert Möckel, Gregor Hlawacek, and Zofia Lendzion-Bieluń. 2024. "Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate" Molecules 29, no. 15: 3527. https://doi.org/10.3390/molecules29153527
APA StyleSplinter, K., Möckel, R., Hlawacek, G., & Lendzion-Bieluń, Z. (2024). Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate. Molecules, 29(15), 3527. https://doi.org/10.3390/molecules29153527