Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives
Abstract
:1. Introduction
2. Structure and Properties of SBA-15
2.1. Synthesis Methods of SBA-15
2.2. Structural and Textural Properties of SBA-15
2.3. Advantages of SBA-15 in Adsorption and Separation
- a.
- High adsorption capacity and selectivity: Size-selective adsorption and efficient removal of pollutants
- b.
- Fast adsorption kinetics: Rapid diffusion and transport of adsorbates
- c.
- Versatile surface chemistry: Tailoring adsorption properties through functionalization
- d.
- Excellent stability and reusability: Long-term use and cost-effectiveness
- e.
- Compatibility with various modification methods: Rational design of multi-functional adsorbents
3. Surface Modification Strategies of SBA-15
3.1. Inorganic Modification
3.1.1. Metal Oxide and Non-Metal Element Modification
3.1.2. Noble Metal Nanoparticle Modification
3.2. Organic Modification
3.2.1. Incorporation of Organic Functional Groups
3.2.2. Modification with Organic Small Molecules
3.2.3. Polymer Grafting and In Situ Polymerization
3.3. Inorganic–Organic Composite Modification
3.3.1. Preparation of Inorganic–Organic Composite Materials
3.3.2. Synergistic Effects and Applications
4. Limitations and Future Perspectives of SBA-15
4.1. High Cost and Poor Physical Properties
4.2. Synthesis and Functionalization Challenges
4.3. Future Perspectives and Improvement Strategies
5. Adsorption and Separation Performance and Applications of SBA-15
5.1. Adsorption of Organic Pollutants and Heavy Metal Ions
5.1.1. Adsorption of Organic Pollutants
5.1.2. Adsorption of Heavy Metal Ions
5.2. Gas Adsorption and Membrane Separation
5.3. Applications of Biomolecules
5.4. Chromatographic Separation
5.5. Solid–Liquid Separation
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-HB | 2-Hydroxybenzaldehyde |
4-HB | 4-Hydroxybenzaldehyde |
AO | Amidoxime |
APTES | 3-Aminopropyltriethoxysilane |
BHET | Bis(2-Hydroxyethyl) Terephthalate |
CEC | Capillary Electrochromatography |
CMK-3 | Carbon Mesostructured by KAIST-3 |
CMK-5 | Carbon Mesostructured by KAIST-5 |
DES | Deep Eutectic Solvents |
DM | Direct Modification |
Dox | Doxorubicin |
Fe3O4@SBA-15 | Fe3O4-wrapped mesoporous molecular sieve catalyst |
Fe3O4@SBA-15-Gd | Magnetic Fe3O4@SBA-15-Gd nano-adsorbent |
Fe3O4@SBA-15-NH2 | Fe3O4@SBA-15 modified with 3-aminopropyltriethoxysilane |
FTIR | Fourier-Transform Infrared Spectroscopy |
Ga-SBA-15 | Gallium-substituted SBA-15 |
HPLC | High-Performance Liquid Chromatography |
IL | Ionic Liquid |
La-IIP/SBA-15/Y | Lanthanum ion-imprinted polymer on composite molecular sieve SBA-15/Y |
MCM-41 | Mobil Composition of Matter No. 41 |
MCM-48 | Mobil Composition of Matter No. 48 |
Melamine-MS-SBA-15 | Melamine functionalized mesoporous silica-SBA-15 |
MMMs | Mixed Matrix Membranes |
MOFs | Metal-Organic Frameworks |
NH2-H-SBA-15 | NH2-functionalized hydroxylated mesoporous SBA-15 |
NMR | Nuclear Magnetic Resonance |
P123 | Pluronic P123 |
P-SBA-15 | Phosphorous Acid Modified SBA-15 |
PAA | Phosphonoacetic Acid |
PAN | Polyacrylonitrile |
PAO | Poly amidoxime |
PAO/AO-SBA-15 | Amidoxime-functionalized PAN/AO-SBA-15 membrane |
PEI | Polyethyleneimine |
PET | Polyethylene Terephthalate |
PFO | Palm Fatty Oil |
PS | Persulfate |
SBA-15 | Santa Barbara Amorphous-15 |
SBA-15@AMI NPs | Amidoxime functionalized mesoporous silica nanoparticles |
SDAs | Structure-Directing Agents |
SEM | Scanning Electron Microscopy |
SV | Sodium valproate |
TEM | Transmission Electron Microscopy |
TEOS | Tetraethyl Orthosilicates |
VOCs | Volatile Organic Compounds |
XPS | X-ray Photoelectron Spectroscopy |
XRD | X-ray Diffraction |
References
- Sacramento, R.A.; Cysneiros, O.M.S.; Silva, B.J.B.; Silva, A.O.S. Synthesis and Characterization of Mesoporous Materials with SBA and MCM Structure Types. Cerâmica 2019, 65, 585–591. [Google Scholar] [CrossRef]
- Bernardos, A.; Kourimska, L. Applications of Mesoporous Silica Materials in Food—A Review. Czech J. Food Sci. 2013, 31, 99–107. [Google Scholar] [CrossRef]
- Rizzi, F.; Castaldo, R.; Latronico, T.; Lasala, P.; Gentile, G.; Lavorgna, M.; Striccoli, M.; Agostiano, A.; Comparelli, R.; Depalo, N.; et al. High Surface Area Mesoporous Silica Nanoparticles with Tunable Size in the Sub-Micrometer Regime: Insights on the Size and Porosity Control Mechanisms. Molecules 2021, 26, 4247. [Google Scholar] [CrossRef] [PubMed]
- Nebhani, L.; Mishra, S.; Joshi, T. Polymer Functionalization of Mesoporous Silica Nanoparticles Using Controlled Radical Polymerization Techniques. In Advances in Microporous and Mesoporous Materials; Acuña, R.H., Ed.; IntechOpen: Rijeka, The Republic of Croatia, 2020. [Google Scholar]
- Mohamed Isa, E.D.; Ahmad, H.; Abdul Rahman, M.B.; Gill, M.R. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics 2021, 13, 152. [Google Scholar] [CrossRef]
- Munaweera, I.; Pathiraja, A.S.; Kottegoda, N. Surface Functionalized Mesoporous Silica Nanoparticles for Enhanced Removal of Heavy Metals: A Review. VJScience 2023, 1, 100–131. [Google Scholar] [CrossRef]
- Escriche-Navarro, B.; Escudero, A.; Lucena-Sánchez, E.; Sancenón, F.; García-Fernández, A.; Martínez-Máñez, R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. Adv. Sci. 2022, 9, 2200756. [Google Scholar] [CrossRef]
- Kim, M.; Xin, R.; Earnshaw, J.; Tang, J.; Hill, J.P.; Ashok, A.; Nanjundan, A.K.; Kim, J.; Young, C.; Sugahara, Y.; et al. MOF-Derived Nanoporous Carbons with Diverse Tunable Nanoarchitectures. Nat. Protoc. 2022, 17, 2990–3027. [Google Scholar] [CrossRef]
- Xie, W.; Huang, X.; Zhu, C.; Jiang, F.; Deng, Y.; Yu, B.; Wu, L.; Yue, Q.; Deng, Y. A Versatile Synthesis Platform Based on Polymer Cubosomes for a Library of Highly Ordered Nanoporous Metal Oxides Particles. Adv. Mater. 2024, 36, 2313920. [Google Scholar] [CrossRef] [PubMed]
- Venturi, D.M.; Notari, M.S.; Bondi, R.; Mosconi, E.; Kaiser, W.; Mercuri, G.; Giambastiani, G.; Rossin, A.; Taddei, M.; Costantino, F. Increased CO2 Affinity and Adsorption Selectivity in MOF-801 Fluorinated Analogues. ACS Appl. Mater. Interfaces 2022, 14, 40801–40811. [Google Scholar] [CrossRef]
- Brandt, P.; Nuhnen, A.; Öztürk, S.; Kurt, G.; Liang, J.; Janiak, C. Comparative Evaluation of Different MOF and Non-MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low-Pressure Uptake. Adv. Sustain. Syst. 2021, 5, 2000285. [Google Scholar] [CrossRef]
- Jin, G.-X.; Wang, T.; Yue, T.-X.; Wang, X.-K.; Dai, F.; Wu, X.-W.; Liu, Q.-K.; Ma, J.-P. Cd-MOF: Specific Adsorption Selectivity for Linear Alkyne (Propyne, 2-Butyne and Phenylacetylene) Molecules. Chem. Commun. 2021, 57, 13325–13328. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Costa, I.C.; Dib, E.; Nesterenko, N.; Dath, J.-P.; Gilson, J.-P.; Mintova, S. Silanol Defect Engineering and Healing in Zeolites: Opportunities to Fine-Tune Their Properties and Performances. Chem. Soc. Rev. 2021, 50, 11156–11179. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Zou, X.; Zuo, J.; Li, J.; Liu, Y.; Pui, D.Y. Synthesis and Gas Separation of Chabazite Zeolite Membranes. J. Inorg. Mater. 2021, 36, 579. [Google Scholar] [CrossRef]
- Devi, R.; Kumar, V.; Kumar, S.; Bulla, M.; Jatrana, A.; Rani, R.; Mishra, A.K.; Singh, P. Recent Advancement in Biomass-Derived Activated Carbon for Waste Water Treatment, Energy Storage, and Gas Purification: A Review. J. Mater. Sci. 2023, 58, 12119–12142. [Google Scholar] [CrossRef]
- Muzarpaar, S.; Leman, A.M.; Rahman, K.A.; Rahim, S.Z.A. Reliable Method and Multistage Process Involved in the Production of Activated Carbon Based on Raw Material-A Systematic Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012030. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Chu, D.; Li, C.; Zhang, Y.; Wu, F.; Li, L.; Xie, M.; Huang, J.; Chen, R. Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Appl. Mater. Interfaces 2021, 13, 38202–38212. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K.T.; Bein, T.; Nazar, L.F. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2012, 51, 3591–3595. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Z.; Jhung, S.H. Facile in Situ Syntheses of Highly Water-Stable Acidic Sulfonated Mesoporous Silica without Surfactant or Template. Eur. J. Inorg. Chem. 2014, 2014, 3420–3426. [Google Scholar] [CrossRef]
- de Paula, F.d.C.; Effting, L.; Arízaga, G.G.C.; Giona, R.M.; Tessaro, A.L.; Bezerra, F.M.; Bail, A. Spherical Mesoporous Silica Designed for the Removal of Methylene Blue from Water under Strong Acidic Conditions. Environ. Technol. 2022, 43, 2278–2289. [Google Scholar] [CrossRef]
- Ziarani, M.G.; Javadi, F.; Mohajer, F.; Badiei, A. The Synthesis and Application of Ionic Liquid Functionalized Mesoporous Silica SBA-15 for Organic Synthesis. Curr. Org. Synth. 2022, 19, 874–904. [Google Scholar] [CrossRef]
- Kamaruzaman, M.F.; Hin, T.Y.Y.; Derawi, D. Synthesis and Characterization of Nickel and Cobalt Species within SBA-15. AIP Conf. Proc. 2019, 2111, 050007. [Google Scholar] [CrossRef]
- Samadi-Maybodi, A.; Sedighi-Pashaki, E. Comprehensive Study of Loading and Release of Sodium Valproate Drug Molecule from Functionalized SBA-15 with Aminopropyl Groups through Co-Condensation Modification Method. Mater. Chem. Phys. 2021, 257, 123622. [Google Scholar] [CrossRef]
- Hajiaghababaei, L.; Abozari, S.; Badiei, A.; Zarabadi Poor, P.; Dehghan Abkenar, S.; Ganjali, M.R.; Mohammadi Ziarani, G. Amino Ethyl-Functionalized SBA-15: A Promising Adsorbent for Anionic and Cationic Dyes Removal. Iran. J. Chem. Chem. Eng. 2017, 36, 97–108. [Google Scholar] [CrossRef]
- Shakeri, M.; Khatami Shal, Z.; Van Der Voort, P. An Overview of the Challenges and Progress of Synthesis, Characterization and Applications of Plugged SBA-15 Materials for Heterogeneous Catalysis. Materials 2021, 14, 5082. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Wang, M.; Liu, J.; Guo, B. Recent Advances of SBA-15-Based Composites as the Heterogeneous Catalysts in Water Decontamination: A Mini-Review. J. Environ. Manag. 2020, 254, 109787. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.; Geszke-Moritz, M. The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. Materials 2019, 12, 3671. [Google Scholar] [CrossRef] [PubMed]
- Awoke, Y.; Chebude, Y.; Díaz, I. Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials. Molecules 2020, 25, 4909. [Google Scholar] [CrossRef]
- Chaudhary, D.; Sharma, S. An Overview of Ordered Mesoporous Material SBA-15: Synthesis, Functionalization and Application in Oxidation Reactions. J. Porous Mater. 2017, 24, 741–749. [Google Scholar] [CrossRef]
- Shen, J.; Hess, C. Controlling the Dispersion of Ceria Using Nanoconfinement: Application to CeO2/SBA-15 Catalysts for NH3-SCR. Mater. Adv. 2021, 2, 7400–7412. [Google Scholar] [CrossRef]
- Esperanza Adrover, M.; Pedernera, M.; Bonne, M.; Lebeau, B.; Bucalá, V.; Gallo, L. Synthesis and Characterization of Mesoporous SBA-15 and SBA-16 as Carriers to Improve Albendazole Dissolution Rate. Saudi Pharm. J. 2020, 28, 15–24. [Google Scholar] [CrossRef]
- Barczak, M.; Pietras-Ożga, D.; Seliem, M.K.; de Falco, G.; Giannakoudakis, D.A.; Triantafyllidis, K. Mesoporous Silicas Obtained by Time-Controlled Co-Condensation: A Strategy for Tuning Structure and Sorption Properties. Nanomaterials 2023, 13, 2056. [Google Scholar] [CrossRef]
- da Silva, F.d.C.M.; Costa, M.J.d.S.; da Silva, L.K.R.; Batista, A.M.; da Luz, G.E. Functionalization Methods of SBA-15 Mesoporous Molecular Sieve: A Brief Overview. SN Appl. Sci. 2019, 1, 654. [Google Scholar] [CrossRef]
- Gajardo, J.; Colmenares-Zerpa, J.; Peixoto, A.F.; Silva, D.S.A.; Silva, J.A.; Gispert-Guirado, F.; Llorca, J.; Urquieta-Gonzalez, E.A.; Santos, J.B.O.; Szanyi, J.; et al. Revealing the Effects of High Al Loading Incorporation in the SBA-15 Silica Mesoporous Material. J. Porous Mater. 2023, 30, 1687–1707. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Humelnicu, D.; Grozdov, D.; Ignat, M.; Humelnicu, I. Adsorption Capacity of Silica SBA-15 and Titanosilicate ETS-10 toward Indium Ions. Materials 2023, 16, 3201. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, E.; Li, Y.; Bernards, M.T.; Li, Y.; Cao, G.; He, Y.; Shi, Y. Synergistic Enhancement of CO2 Adsorption Capacity and Kinetics in Triethylenetetrammonium Nitrate Protic Ionic Liquid Functionalized SBA-15. Energy Fuels 2019, 33, 8967–8975. [Google Scholar] [CrossRef]
- Li, C.-Y.; Zhao, B.; Zhang, J.-W. Chemical Quenching of Positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 Catalysts. Acta Phys. Sin. 2022, 71, 067805. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Shang, C.; Wei, X.; Wu, L.; Wang, X.; Wu, W.D.; Chen, X.D.; Selomulya, C.; Zhao, D.; et al. Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS Appl. Mater. Interfaces 2020, 12, 21922–21935. [Google Scholar] [CrossRef]
- Liou, T.-H.; Chen, G.-W.; Yang, S. Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials 2022, 12, 791. [Google Scholar] [CrossRef]
- Dhaneswara, D.; Zulfikar, N.; Fatriansyah, J.F.; Mastuli, M.S.; Suhariadi, I. Adsorption Capacity of Mesoporous SBA-15 Particles Synthesized from Corncobs and Rice Husk at Different CTAB/P123 Ratios and Their Application for Dyes Adsorbent. Evergreen 2023, 10, 924–930. [Google Scholar] [CrossRef]
- Prashanna Suvaitha, S.; Venkatachalam, K. A Study of Kinetics, Thermodynamics, and Adsorption Isotherms of Food and Textile Dyes Removal with SBA-15 Supported Polyaniline Nanocomposite. Water Air Soil Pollut. 2023, 234, 264. [Google Scholar] [CrossRef]
- Yin, H.; Song, T.; Peng, X.-G.; Zhang, P.; Yu, R.-S.; Chen, Z.; Cao, X.-Z.; Wang, B.-Y. Small Angle X-ray Scattering and Positron Annihilation Spectroscopy of Polyethyleneimine Functionalized Ordered Mesoporous Silica SBA-15 Microstructure. Acta. Phys. Sin. 2023, 72, 114101. [Google Scholar] [CrossRef]
- Vatankhah, G.; Aminshahidy, B. Investigation of the Silica Pore Size Effect on the Performance of Polysulfone (PSf) Mixed Matrix Membranes (MMMs) for Gas Separation. J. Polym. Eng. 2021, 41, 627–636. [Google Scholar] [CrossRef]
- Borcănescu, S.; Popa, A.; Verdeș, O.; Suba, M. Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO2 Capture. Int. J. Mol. Sci. 2023, 24, 10345. [Google Scholar] [CrossRef]
- Cui, Y.; Suo, Y.; Zhang, W.; Wang, Y.; Nie, C.; Wang, Y. Preparation of Pd/Ce(F)-MCM-48 Catalysts and Their Catalytic Performance of n -Heptane Isomerization. Green Process. Synth. 2023, 12, 20230066. [Google Scholar] [CrossRef]
- Claure Zeballos, M.; Pardo Tarifa, F.L.; Lopez, N.L.G.; Cabrera, M.S. Mesoporous Silicoaluminate materials (MCM-41, SBA-15 and MCF) by atrane route for Cobalt Catalyst. Rev. Bol. Quim. 2022, 39, 13–32. [Google Scholar] [CrossRef]
- Bi, D.; Cai, W.; Xiong, L.; Luo, Q.; Wang, Y.; Zhang, Z.; Xu, L.; Cao, X.; Liu, Y. Comparison of Adsorption of U(VI) by Magnetic MCM-41, MCM-48 and SBA-15 Mesoporous Silicas. J. Radioanal. Nucl. Chem. 2024, 333, 1343–1356. [Google Scholar] [CrossRef]
- Jermjun, K.; Khumho, R.; Thongoiam, M.; Yousatit, S.; Yokoi, T.; Ngamcharussrivichai, C.; Nuntang, S. Natural Rubber/Hexagonal Mesoporous Silica Nanocomposites as Efficient Adsorbents for the Selective Adsorption of (−)-Epigallocatechin Gallate and Caffeine from Green Tea. Molecules 2023, 28, 6019. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Junck, J.; Akpotu, S.O.; Düring, R.-A. Isolation of Aqueous Pesticides on Surface-Functionalized SBA-15: Glyphosate Kinetics and Detailed Empirical Insights for Atrazine. Environ. Sci. Process. Impacts 2024, 26, 323–333. [Google Scholar] [CrossRef]
- Saha, D.; Orkoulas, G.; Bates, D. One-Step Synthesis of Sulfur-Doped Nanoporous Carbons from Lignin with Ultra-High Surface Area, Sulfur Content and CO2 Adsorption Capacity. Materials 2023, 16, 455. [Google Scholar] [CrossRef]
- Ding, L.; Habboubi, H.; Sayed, E.; Husinsyah, S.; Badairy, H.; Alghamdi, R. Study on Mesoporous Al-SBA-15 with Enhanced Acidity and Hydrothermal Stability for Heavy Oil Hydrocracking Conversion. Am. J. Mater. Synth. Process. 2018, 3, 39–46. [Google Scholar] [CrossRef]
- Jahandar Lashaki, M.; Ziaei-Azad, H.; Sayari, A. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption. ChemSusChem 2017, 10, 4037–4045. [Google Scholar] [CrossRef]
- Göl, S.C.; Akbay, E. Reusable TiO2-SBA-15 Synthesized by Different Silica/Titania Ratios for Photodegradation. ChemistrySelect 2023, 8, e202301887. [Google Scholar] [CrossRef]
- Trendafilova, I.; Ojeda, M.; Andresen, J.M.; Ristić, A.; Dimitrov, M.; Tušar, N.N.; Atanasova, G.; Popova, M. Low-Temperature Toluene Oxidation on Fe-Containing Modified SBA-15 Materials. Molecules 2023, 28, 204. [Google Scholar] [CrossRef]
- Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G. Modification of Mesoporous Silica SBA-15 with Different Organic Molecules to Gain Chemical Sensors: A Review. Nanochemistry Res. 2016, 1, 127–141. [Google Scholar] [CrossRef]
- Li, Y.; Yan, B.; Liu, J.-L. Luminescent Organic–Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base. Nanoscale Res. Lett. 2010, 5, 797. [Google Scholar] [CrossRef]
- Huirache-Acuña, R.; Nava, R.; Peza-Ledesma, C.L.; Lara-Romero, J.; Alonso-Núez, G.; Pawelec, B.; Rivera-Muñoz, E.M. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review. Materials 2013, 6, 4139–4167. [Google Scholar] [CrossRef]
- Kosmulski, M.; Mączka, E.; Ruchomski, L. Synthesis and Properties of SBA-15 Modified with Non-Noble Metals. Colloids Interfaces 2018, 2, 59. [Google Scholar] [CrossRef]
- Lin, F.; Si, M.; Lu, Y.; Tang, K. Surfactant-Assisted Impregnation of SBA-15 with Highly Dispersed Copper Species for CO Oxidation. Mater. Lett. 2023, 335, 133825. [Google Scholar] [CrossRef]
- Yadav, R.; Muralidhar, A.; Shamna, A.; Aghila, P.; Gurrala, L.; Sakthivel, A. Aluminium Oxide Supported on SBA-15 Molecular Sieves as Potential Lewis Acid Catalysts for Epoxide Ring Opening Using Aniline. Catal. Lett. 2018, 148, 1407–1415. [Google Scholar] [CrossRef]
- Yao, H.; Liu, L.; Yan, D.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Colorless BHET Obtained from PET by Modified Mesoporous Catalyst ZnO/SBA-15. Chem. Eng. Sci. 2022, 248, 117109. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Zeng, T.; Chen, J.; Song, S. Synergistically Enhanced Heterogeneous Activation of Persulfate for Aqueous Carbamazepine Degradation Using Fe3O4@SBA-15. Sci. Total Environ. 2021, 760, 144027. [Google Scholar] [CrossRef]
- Rodrigues, J.J.; Lima, L.A.; De Paula, G.M.; Freire Rodrigues, M.G. Synthesis and Characterization of Molecular Sieve SBA-15 and Catalysts Co/SBA-15 and Ru/Co/SBA-15. In Materials Science Forum; Trans Tech Publications Ltd.: Bach, Switzerland, 2014; Volume 798–799, pp. 100–105. [Google Scholar]
- Ngomade, S.B.L.; Fotsop, C.G.; Nguena, K.L.T.; Tchummegne, I.K.; Ngueteu, M.L.T.; Tamo, A.K.; Nche, G.N.-A.; Anagho, S.G. Catalytic Performances of CeO2@SBA-15 as Nanostructured Material for Biodiesel Production from Podocarpus Falcatus Oil. Chem. Eng. Res. Des. 2023, 194, 789–800. [Google Scholar] [CrossRef]
- Pertiwi, Y.E.; Ulfa, M.; Saraswati, T.E.; Prasetyoko, D.; Trisunaryanti, W. Understanding Pore Surface Modification of Sucrose-Modified Iron Oxide/Silica Mesoporous Composite for Degradation of Methylene Blue. Bull. Chem. React. Eng. Catal. 2021, 16, 459–471. [Google Scholar] [CrossRef]
- Gao, Q.; Xie, J.-F.; Shao, Y.-T.; Chen, C.; Han, B.; Xia, K.-S.; Zhou, C.-G. Ultrafast and High-Capacity Adsorption of Gd(III) onto Inorganic Phosphorous Acid Modified Mesoporous SBA-15. Chem. Eng. J. 2017, 313, 197–206. [Google Scholar] [CrossRef]
- Bepari, R.A.; Rahman, Z.; Das, B.K. A New Route for the Fabrication of SBA-15 Supported Co3O4 and Its Catalytic Application in the Epoxidation of Styrene. Appl. Surf. Sci. Adv. 2023, 17, 100440. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Lee, T.-Y.; Chiang, H.-L. Nitrogen Adsorption and Characteristics of Iron, Cobalt, and Nickel Oxides Impregnated on SBA-15 Mesoporous Silica. Nanomaterials 2023, 13, 1015. [Google Scholar] [CrossRef]
- Meechai, T.; Poonsawat, T.; Limchoowong, N.; Laksee, S.; Chumkaeo, P.; Tuanudom, R.; Yatsomboon, A.; Honghernsthit, L.; Somsook, E.; Sricharoen, P. One-Pot Synthesis of Iron Oxide—Gamma Irradiated Chitosan Modified SBA-15 Mesoporous Silica for Effective Methylene Blue Dye Removal. Heliyon 2023, 9, e16178. [Google Scholar] [CrossRef]
- Wang, Q.; Gui, X.; Zhou, X.; Cui, J. Phosphorylacetic Acid Modified Fly Ash-Based SBA-15 and Its Selective Adsorption of Rare Earth. Fine Chem. 2021, 38, 2359–2367. [Google Scholar]
- Zhang, Z.; Luo, Y.; Guo, Y.; Shi, W.; Wang, W.; Zhang, B.; Zhang, R.; Bao, X.; Wu, S.; Cui, F. Pd and Pt Nanoparticles Supported on the Mesoporous Silica Molecular Sieve SBA-15 with Enhanced Activity and Stability in Catalytic Bromate Reduction. Chem. Eng. J. 2018, 344, 114–123. [Google Scholar] [CrossRef]
- Palanichamy, K.; Sasirekha, N. Dry Reforming of Methane Using Bimetallic Pt–Ni/Ti-SBA-15: Effect of Si/Ti Ratio on Catalytic Activity and Stability. Int. J. Hydrog. Energy 2023, 48, 31126–31141. [Google Scholar] [CrossRef]
- Chen, M.; Xu, W.; Liang, Q.; Li, Y. One-step Synthesis of Short-channel HPW/Zr-SBA-15 Catalyst for Synthesis of Bisphenol F. Guangdong Chem. Ind. 2019, 46, 33–36+57. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Sun, J.; Liu, F.; Zhao, C. Preparation of Amino-Modified SBA-15 Mesoporous Molecular Sieves Co-Immobilized Double Enzymes/Epoxy Composite Coating and Its Corrosion Resistance. Corros. Prot. 2020, 41, 7–14+20. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Wang, Z.; Ding, K.; Gao, C.; Zhu, G. Amino-Functionalization of Hydroxylated SBA-15 for Enhanced Uranium Adsorption from Seawater. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100614. [Google Scholar] [CrossRef]
- Purrostam, S.; Rahimi-Ahar, Z.; Babapoor, A.; Nematollahzadeh, A.; Salahshoori, I.; Seyfaee, A. Melamine Functionalized Mesoporous Silica SBA-15 for Separation of Chromium (VI) from Wastewater. Mater. Chem. Phys. 2023, 307, 128240. [Google Scholar] [CrossRef]
- Li, D.; Chai, K.; Yao, X.; Zhou, L.; Wu, K.; Huang, Z.; Yan, J.; Qin, X.; Wei, W.; Ji, H. β-Cyclodextrin Functionalized SBA-15 via Amide Linkage as a Super Adsorbent for Rapid Removal of Methyl Blue. J. Colloid Interface Sci. 2021, 583, 100–112. [Google Scholar] [CrossRef]
- Zadmard, R.; Hokmabadi, F.; Jalali, M.R.; Akbarzadeh, A. Recent Progress to Construct Calixarene-Based Polymers Using Covalent Bonds: Synthesis and Applications. RSC Adv. 2020, 10, 32690–32722. [Google Scholar] [CrossRef]
- Yoo, J.-M.; Park, S.S.; Yan, Y.-Z.; Ha, C.-S. Crown-Ether-Modified SBA-15 for the Adsorption of Cr(VI) and Zn(II) from Water. Materials 2021, 14, 5060. [Google Scholar] [CrossRef]
- Parambadath, S.; Mathew, A.; Mohan, A.; Ha, C.-S. Chelation Dependent Selective Adsorption of Metal Ions by Schiff Base Modified SBA-15 from Aqueous Solutions. J. Environ. Chem. Eng. 2020, 8, 104248. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Ding, K.; Wang, L.; Gao, C.; Zhu, G. Novel Amidoxime-Functionalized SBA-15-Incorporated Polymer Membrane-Type Adsorbent for Uranium Extraction from Wastewater. J. Water Process Eng. 2021, 43, 102316. [Google Scholar] [CrossRef]
- Su, H.-L.; Xu, L.; Hu, X.-J.; Chen, F.-F.; Li, G.; Yang, Z.-K.; Wang, L.-P.; Li, H.-L. Polymer Grafted Mesoporous SBA-15 Material Synthesized via Metal-Free ATRP as pH-Sensitive Drug Carrier for Quercetin. Eur. Polym. J. 2021, 148, 110354. [Google Scholar] [CrossRef]
- Liu, H.; Lao, Y.; Wang, J.; Jiang, J.; Yu, C.; Liu, Y. Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica. Materials 2022, 15, 8879. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Shi, M.; Qin, Y.; Li, X. Study on the Adsorption of Lanthanum Ion Imprinted on SBA-15/Y. J. Indian Chem. Soc. 2022, 99, 100425. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Zhou, D.; Fan, Y.; Liu, W.; Hu, W.; Liu, X.; Zhu, J. Screening of α-Glucosidase Inhibitors in Tea by Amino-Functionalized Mesoporous SBA-15 Immobilized α-Glucosidase Microreactor. Microporous Mesoporous Mater. 2023, 359, 112656. [Google Scholar] [CrossRef]
- Samiey, B.; Cheng, C.-H.; Wu, J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review. Materials 2014, 7, 673–726. [Google Scholar] [CrossRef] [PubMed]
- Wysokowski, M.; Luu, R.K.; Arevalo, S.; Khare, E.; Stachowiak, W.; Niemczak, M.; Jesionowski, T.; Buehler, M.J. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic–Organic Materials. Chem. Mater. 2023, 35, 7878–7903. [Google Scholar] [CrossRef]
- Sharma, A.; Kokil, G.; He, Y.; Lowe, B.; Salam, A.; Altalhi, T.; Ye, Q.; Kumeria, T. Inorganic/Organic Combination: Inorganic Particles/Polymer Composites for Tissue Engineering Applications. Bioact. Mater. 2023, 24, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Kalbasi, R.J.; Kolahdoozan, M.; Rezaei, M. Synthesis and Characterization of PVAm/SBA-15 as a Novel Organic–Inorganic Hybrid Basic Catalyst. Mater. Chem. Phys. 2011, 125, 784–790. [Google Scholar] [CrossRef]
- Fathi Vavsari, V.; Mohammadi Ziarani, G.; Badiei, A. The Role of SBA-15 in Drug Delivery. RSC Adv. 2015, 5, 91686–91707. [Google Scholar] [CrossRef]
- Cai, W.; Yang, Z.; Qi, J.; Chen, J.; Ru, X.; Xiong, Z.; Xia, Q.; Cai, Z. A method of the efficient anthraquinone hydrogenation catalyst carriers of Al-SBA-15 are synthesized by FCC dead catalyst. Chinese Patent CN108421556B, 18 August 2020. [Google Scholar]
- Kalhor, M.; Sajjadi, S.M.; Dadras, A. Cu/TCH-pr@SBA-15 Nano-Composite: A New Organometallic Catalyst for Facile Three-Component Synthesis of 4-Arylidene-Isoxazolidinones. RSC Adv. 2020, 10, 27439–27446. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.R.; Park, J.-W.; Kim, H.; Ji, H.; Lim, S.H.; Jun, C.-H. A One-Step Co-Condensation Method for the Synthesis of Well-Defined Functionalized Mesoporous SBA-15 Using Trimethallylsilanes as Organosilane Sources. Chem. Commun. 2015, 51, 17084–17087. [Google Scholar] [CrossRef]
- Tonutti, L.G.; Maquirriain, M.A.; Querini, C.A.; Dalla Costa, B.O. Synthesis of Sulfonic SBA-15 by Co-Condensation and Soxhlet Extraction: Optimization by Shortening the Preparation Time. J. Porous Mater. 2023, 30, 33–42. [Google Scholar] [CrossRef]
- Zhao, H.; Han, H. Synthesis and Characterization of Functionalized SBA-15 Silica through Template Removal. J. Solid State Chem. 2020, 282, 121074. [Google Scholar] [CrossRef]
- Wu, F.; Du, J.; Liu, N.; Xu, J.; Xue, B. Potassium-Doped Carbon Nitride Supported on SBA-15 for Enhanced Catalytic Knoevenagel Condensation under Mild Conditions. Appl. Catal. A Gen. 2022, 641, 118677. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, Q.; Fang, M.; Liu, R.; Dong, M.; Jiang, T. Catalytic Activity Comparison of Zr–SBA-15 Immobilized by a Brønsted–Lewis Acidic Ionic Liquid in Different Esterifications. RSC Adv. 2017, 7, 32427–32435. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Xue, M.; Xu, Q.; Wu, J.; Yin, J. The Imidazole Ionic Liquid Was Chemically Grafted on SBA-15 to Continuously Catalyze Carbon Dioxide to Prepare Propylene Carbonate. J. Environ. Chem. Eng. 2023, 11, 110438. [Google Scholar] [CrossRef]
- Tang, S.; Hu, Y.; Yu, D.; Zou, B.; Jiang, L. Immobilization of Burkholderia Cepacia Lipase on Functionalized Ionic Liquids Modified Mesoporous Silica SBA-15. Chin. J. Catal. 2013, 33, 1565–1571. [Google Scholar] [CrossRef]
- Gabla, J.J.; Lathiya, D.R.; Revawala, A.A.; Maheria, K.C. Propyl–SO3H Functionalized SBA-15: Microwave-Mediated Green Synthesis of Biologically Active Multi-Substituted Imidazole Scaffolds. Res. Chem. Intermed. 2019, 45, 1863–1881. [Google Scholar] [CrossRef]
- López-Sanz, J.; Pérez-Mayoral, E.; Soriano, E.; Sturm, M.; Martín-Aranda, R.M.; López-Peinado, A.J.; Čejka, J. New Inorganic–Organic Hybrid Materials Based on SBA-15 Molecular Sieves Involved in the Quinolines Synthesis. Catal. Today 2012, 187, 97–103. [Google Scholar] [CrossRef]
- Liu, F.; Wang, A.; Xiang, M.; Hu, Q.; Hu, B. Effective Adsorption and Immobilization of Cr(VI) and U(VI) from Aqueous Solution by Magnetic Amine-Functionalized SBA-15. Sep. Purif. Technol. 2022, 282, 120042. [Google Scholar] [CrossRef]
- Hassanzadeh-Afruzi, F.; Esmailzadeh, F.; Asgharnasl, S.; Ganjali, F.; Taheri-Ledari, R.; Maleki, A. Efficient Removal of Pb(II)/Cu(II) from Aqueous Samples by a Guanidine-Functionalized SBA-15/Fe3O4. Sep. Purif. Technol. 2022, 291, 120956. [Google Scholar] [CrossRef]
- Castanheira, B.; Otubo, L.; Oliveira, C.L.P.; Montes, R.; Quintana, J.B.; Rodil, R.; Brochsztain, S.; Vilar, V.J.P.; Teixeira, A.C.S.C. Functionalized Mesoporous Silicas SBA-15 for Heterogeneous Photocatalysis towards CECs Removal from Secondary Urban Wastewater. Chemosphere 2022, 287, 132023. [Google Scholar] [CrossRef]
- Paulista, L.O.; Ferreira, A.F.P.; Castanheira, B.; Ðolić, M.B.; Martins, R.J.E.; Boaventura, R.A.R.; Vilar, V.J.P.; Silva, T.F.C.V. Solar-Driven Thermo-Photocatalytic CO2 Methanation over a Structured RuO2:TiO2/SBA-15 Nanocomposite at Low Temperature. Appl. Catal. B Environ. 2024, 340, 123232. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, W.; Xu, H. Monodisperse, Mesoporous ZnxCd1−xS Nanoparticles as Stable Visible-Light-Driven Photocatalysts. J. Phys. Chem. C 2008, 112, 16754–16758. [Google Scholar] [CrossRef]
- Sun, C.; Deng, N.; An, H.; Cui, H.; Zhai, J. Electrocatalytic Reduction of Bromate Based on Pd Nanoparticles Uniformly Anchored on Polyaniline/SBA-15. Chemosphere 2015, 141, 243–249. [Google Scholar] [CrossRef]
- Yang, C.-M.; Liu, P.-H.; Ho, Y.; Chiu, C.-Y.; Chao, K. Highly Dispersed Metal Nanoparticles in Functionalized SBA-15. Chem. Mater. 2002, 15, 275–280. [Google Scholar] [CrossRef]
- Ulagesan, S.; Santhamoorthy, M.; Tuong Vy Phan, T.; Alagumalai, K.; Thirupathi, K.; Kim, S.-C.; Nam, T.-J.; Choi, Y.-H. Mesoporous Silica (SBA-15) with Enriched Amidoxime Functionalities for pH-Controlled Anticancer Drug Delivery. Inorg. Chem. Commun. 2022, 146, 110132. [Google Scholar] [CrossRef]
- Costa, I.C.S.; Assaf, E.M.; Assaf, J.M. Improving Coking Resistance and Catalytic Performance of Ni Catalyst from LaNiO3 Perovskite by Dispersion on SBA-15 Mesoporous Silica for Hydrogen Production by Steam Reforming of Ethanol. Top. Catal. 2021, 1–16. [Google Scholar] [CrossRef]
- Medeiros De Paula, G.; Do Nascimento Rocha De Paula, L.; Freire Rodrigues, M.G. Production of MCM-41 and SBA-15 Hybrid Silicas from Industrial Waste. Silicon 2022, 14, 439–447. [Google Scholar] [CrossRef]
- Zanuttini, M.S.; Tonutti, L.G.; Neyertz, C.A.; Ferretti, C.; Sánchez, B.S.; Dalla Costa, B.O.; Querini, C.A. Production of a High Molecular Weight Jet-Fuel Precursor from Biomass Derived Furfural and 2-Methylfuran Using Propyl Sulfonic SBA-15 Catalysts. Appl. Catal. A Gen. 2023, 665, 119383. [Google Scholar] [CrossRef]
- Matei, D.; Katsina, A.U.; Mihai, S.; Cursaru, D.L.; Şomoghi, R.; Nistor, C.L. Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 1210. [Google Scholar] [CrossRef]
- Colmenares-Zerpa, J.; Chimentão, R.J.; Gispert-Guirado, F.; Peixoto, A.F.; Llorca, J. Preparation of SBA-15 and Zr-SBA-15 Materials by Direct-Synthesis and pH-Adjustment Methods. Mater. Lett. 2021, 301, 130326. [Google Scholar] [CrossRef]
- Yu, X.; Li, H.; Yu, T.; Weng, Q.; Zhao, Z.; Xia, Z. Preparation and Application of Metal Oxides/SBA-15 Mesoporous Composites as Catalysts for Selective Oxidation of Benzyl Alcohol. Int. J. Electrochem. Sci. 2022, 17, 220114. [Google Scholar] [CrossRef]
- Nasser, G.A.; Adamu, H.; Bakare, A.I.; Sanhoob, M.A.; Zhao, H.; Yamani, Z.H.; Muraza, O.; Shafeai, E.; Schwank, J.W. Conversion of NOx over Aluminosilicate Cu-CHA Zeolite Catalysts Synthesized Free of Organic Structure-Directing Agents. Appl. Sci. 2023, 13, 13001. [Google Scholar] [CrossRef]
- Tao, Q.; Xu, Z.; Wang, J.; Liu, F.; Wan, H.; Zheng, S. Adsorption of Humic Acid to Aminopropyl Functionalized SBA-15. Microporous Mesoporous Mater. 2010, 131, 177–185. [Google Scholar] [CrossRef]
- Hu, Q.; Li, J.J.; Hao, Z.P.; Li, L.D.; Qiao, S.Z. Dynamic Adsorption of Volatile Organic Compounds on Organofunctionalized SBA-15 Materials. Chem. Eng. J. 2009, 149, 281–288. [Google Scholar] [CrossRef]
- Sypabekova, M.; Hagemann, A.; Rho, D.; Kim, S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. Biosensors 2022, 13, 36. [Google Scholar] [CrossRef]
- Wang, X.; Lin, K.S.K.; Chan, J.C.C.; Cheng, S. Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. J. Phys. Chem. B 2005, 109, 1763–1769. [Google Scholar] [CrossRef]
- Taghavi, S.; Shahnani, M.; Rafati, H. Preparation and Characterization of Tamoxifen Loaded Silica and NH2 Functionalized Mesoporous Silica Nanoparticles as Delivery Systems against MCF-7 Breast Cancer Cells. Iran. J. Basic Med. Sci. 2023, 26, 1334–1341. [Google Scholar] [CrossRef]
- Munguía-Cortés, L.; Pérez-Hermosillo, I.; Ojeda-López, R.; Esparza-Schulz, J.M.; Felipe-Mendoza, C.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. APTES-Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide. J. Mex. Chem. Soc. 2018, 61, 273–281. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Kuśmierek, K.; Skrzypczyńska, K.; Świątkowski, A. Effect of the SBA-15 N-Functionalization on the Adsorption of Organic Contaminants. Desalination Water Treat. 2023, 312, 39–49. [Google Scholar] [CrossRef]
- Giraldo, L.; Moreno-Piraján, J.C. Study on the Adsorption of Heavy Metal Ions from Aqueous Solution on Modified SBA-15. Mater. Res. 2013, 16, 745–754. [Google Scholar] [CrossRef]
- Yanga, Y.; Caoa, X.; Maa, Z.; Wua, G.; Zhenga, L.; Zhanga, Y. Adsorption of Cu (II) and Cr (III) Ions on SBA-15 Mesoporous Silica Functionalized by Branched Amine. Desalination Water Treat. 2021, 213, 358–370. [Google Scholar] [CrossRef]
- Ezzatkhah, R.; Rahimi-Ahar, Z.; Babapoor, A.; Nemati Tasandeh, M.; Yaghoubi, S.; Valizadeh Harzand, F. Urea-Functionalized Mesoporous Silica SBA-15 for Heavy Metal Adsorption: Synthesis, Characterization, and Optimization. Mater. Sci. Eng. B 2023, 297, 116799. [Google Scholar] [CrossRef]
- Li, J.; Qi, T.; Wang, L.; Liu, C.; Zhang, Y. Synthesis and Characterization of Imidazole-Functionalized SBA-15 as an Adsorbent of Hexavalent Chromium. Mater. Lett. 2007, 61, 3197–3200. [Google Scholar] [CrossRef]
- Kang, T.; Park, Y.; Choi, K.; Lee, J.S.; Yi, J. Ordered Mesoporous Silica (SBA-15) Derivatized with Imidazole-Containing Functionalities as a Selective Adsorbent of Precious Metal Ions. J. Mater. Chem. 2004, 14, 1043–1049. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, Y. Mixed-Amine Modified SBA-15 as Novel Adsorbent of CO2 Separation for Biogas Upgrading. Sep. Sci. Technol. 2011, 46, 679–686. [Google Scholar] [CrossRef]
- Trejda, M.; Kaszuba, A.; Nurwita, A.; Ziolek, M. Towards Efficient Acidic Catalysts via Optimization of SO3H-Organosilane Immobilization on SBA-15 under Increased Pressure: Potential Applications in Gas and Liquid Phase Reactions. Materials 2021, 14, 7226. [Google Scholar] [CrossRef] [PubMed]
- Shahriarinour, M.; Divsar, F.; Eskandari, Z. Synthesis, Characterization, and Antibacterial Activity of Thymol Loaded SBA-15 Mesoporous Silica Nanoparticles. Inorg. Nano-Met. Chem. 2019, 49, 182–189. [Google Scholar] [CrossRef]
- Dan, H.; Lei, H.; Luo, J.; Guo, Z.; Xiang, Y.; Chen, Y.; Ding, Y. Efficient Adsorption of CO2 by Amino-Functionalized Short Pore SBA-15: Influence of Pore Length on Adsorption Capacity and Amino Efficiency. J. Environ. Chem. Eng. 2023, 11, 111379. [Google Scholar] [CrossRef]
- Sanz-Pérez, E.S.; Olivares-Marín, M.; Arencibia, A.; Sanz, R.; Calleja, G.; Maroto-Valer, M.M. CO2 Adsorption Performance of Amino-Functionalized SBA-15 under Post-Combustion Conditions. Int. J. Greenh. Gas Control 2013, 17, 366–375. [Google Scholar] [CrossRef]
- Anyanwu, J.-T.; Wang, Y.; Yang, R.T. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO2 Capture and Natural Gas Desulfurization. Ind. Eng. Chem. Res. 2021, 60, 6277–6286. [Google Scholar] [CrossRef]
- Tseng, H.-H.; Chuang, H.-W.; Zhuang, G.-L.; Lai, W.-H.; Wey, M.-Y. Structure-Controlled Mesoporous SBA-15-Derived Mixed Matrix Membranes for H2 Purification and CO2 Capture. Int. J. Hydrog. Energy 2017, 42, 11379–11391. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Jiang, X.; Goh, K.; Wang, R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. Membranes 2021, 11, 666. [Google Scholar] [CrossRef]
- Weng, T.-H.; Tseng, H.-H.; Wey, M.-Y. Effect of SBA-15 Texture on the Gas Separation Characteristics of SBA-15/Polymer Multilayer Mixed Matrix Membrane. J. Membr. Sci. 2011, 369, 550–559. [Google Scholar] [CrossRef]
- Saif-ur-Rehman; Zaman, M.K.U.; Ahsan Waseem, M.; Zaman, S.U.; Shozab Mehdi, M. Deep Eutectic Solvent-Functionalized Mesoporous Silica SBA-15-Based Mixed Matrix Polymeric Membranes for Mitigation of CO2. Eng. Proc. 2021, 12, 61. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Wang, H.; Zhang, H. Atom Transfer Radical Polymerization of Diverse Functional SBA-15 for Selective Separation of Proteins. Microporous Mesoporous Mater. 2014, 200, 165–173. [Google Scholar] [CrossRef]
- Miao, H.; Li, M.; Wang, F.; Li, J.; Lin, Y.-W.; Xu, J. Surface Functionalization of SBA-15 for Immobilization of Myoglobin. Front. Bioeng. Biotechnol. 2022, 10, 907855. [Google Scholar] [CrossRef]
- Gondim, D.R.; Cecilia, J.A.; Rodrigues, T.N.B.; Vilarrasa-García, E.; Rodríguez-Castellón, E.; Azevedo, D.C.S.; Silva, I.J. Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. Int. J. Mol. Sci. 2021, 22, 9164. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Huang, J.; Zhong, N. Immobilization of Lipases onto the Halogen & Haloalkanes Modified SBA-15: Enzymatic Activity and Glycerolysis Performance Study. Int. J. Biol. Macromol. 2021, 169, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Salvi, H.M.; Yadav, G.D. Surface Functionalization of SBA-15 for Immobilization of Lipase and Its Application in Synthesis of Alkyl Levulinates: Optimization and Kinetics. Biocatal. Agric. Biotechnol. 2019, 18, 101038. [Google Scholar] [CrossRef]
- Wan, H.; Liu, L.; Li, C.; Xue, X.; Liang, X. Facile Synthesis of Mesoporous SBA-15 Silica Spheres and Its Application for High-Performance Liquid Chromatography. J. Colloid Interface Sci. 2009, 337, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Z.; Zhang, W. Sub-Micrometer Mesoporous SBA-15 Silica Rods as Stationary Phase for Capillary Electrochromatography Separation. Chin. J. Chromatogr. 2013, 31, 335. [Google Scholar] [CrossRef]
- Yasmin, T.; Müller, K. Synthesis and Characterization of Surface Modified SBA-15 Silica Materials and Their Application in Chromatography. J. Chromatogr. A 2011, 1218, 6464–6475. [Google Scholar] [CrossRef]
- Du, M.; Li, W.; Xu, M.; Shao, X.; Pu, X. Enantioseparation of Chiral Compounds on SBA-15 Coated with Cellulose Tris-(3,5-Dimethylphenylcarbamates) as the Stationary Phase for High Performance Liquid Chromatography. Acta. Chim. Sin. 2011, 69, 2746. [Google Scholar]
- Zhang, Y.; Li, L.; Chen, B.; Zhou, R.; Nie, G. Preparation and Characterization of a Novel Isatin Derivative of Beta-Cyclodextrin-Bonded SBA-15 Stationary Phase for HPLC. Chin. J. Anal. Chem. 2014, 42, 375–383. [Google Scholar]
- Wan, L.; Zhang, L.; Lei, W.; Zhu, Y.; Zhang, W.; Wang, Y. Novel Hybrid Organic–Inorganic Monolithic Column Containing Mesoporous Nanoparticles for Capillary Electrochromatography. Talanta 2012, 98, 277–281. [Google Scholar] [CrossRef]
- Ding, S.-S.; Zhu, J.-P.; Wang, Y.; Yu, Y.; Zhao, Z. Recent Progress in Magnetic Nanoparticles and Mesoporous Materials for Enzyme Immobilization: An Update. Braz. J. Biol. 2021, 82, e244496. [Google Scholar] [CrossRef]
- Wei, K.; Wu, X.; Ma, B.; Li, Z.; Xu, Y. Facile Immobilization of His-Tagged Microbacterial Esterase on Ni-SBA-15 with Enhanced Stability for Efficient Synthesis of Key Chiral Intermediate of d-Biotin. Bioprocess. Biosyst. Eng. 2022, 45, 1075–1088. [Google Scholar] [CrossRef]
- Ismail, A.R.; Kashtoh, H.; Betiha, M.A.; Abu Amr, S.A.; Baek, K.-H.; El-Gendy, N.S. Valorization of Waste Cooking Oil into Biodiesel via Bacillus Stratosphericus Lipase Amine-Functionalized Mesoporous SBA-15 Nanobiocatalyst. Int. J. Chem. Eng. 2022, 2022, 7899996. [Google Scholar] [CrossRef]
- Miao, H.; Li, M.; Sun, X.; Xia, J.; Li, Y.; Li, J.; Wang, F.; Xu, J. Effects of Pore Size and Crosslinking Methods on the Immobilization of Myoglobin in SBA-15. Front. Bioeng. Biotechnol. 2022, 9, 827552. [Google Scholar] [CrossRef] [PubMed]
Material | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | Structure | Advantages | Ref. |
---|---|---|---|---|---|---|
SBA-15 | 500–1000 | 0.6–1.2 | 5–30 | Hexagonal | Tunable pore size, thick pore walls, high thermal stability | [42,43] |
MCM-41 | ~1000 | High | 2–10 | Hexagonal | Large surface area, uniform pore size | [44] |
MCM-48 | 1088–1669 | 1.206–1.263 | 2–10 | Cubic | High surface area, 3D pore structure | [44,45] |
MCF | 700–1000 | 0.8–1.2 | 10–50 | Cellular | Large pore volume, interconnected pores | [46] |
KIT-6 | 600–1000 | 0.8–1.5 | 5–9 | Cubic | Bicontinuous cubic structure, high thermal stability | [47] |
HMS | 500–1200 | 0.6–1.0 | 2–10 | Hexagonal | Easy synthesis, tunable pore size | [48] |
Metal Oxide/ Non-Metal Element | Synthesis Methods | Reaction/Application | Performance | Ref. |
---|---|---|---|---|
Al2O3 | One-step wet impregnation | 1-butene metathesis to propene | Enhanced conversion and selectivity; stable catalytic activity | [60] |
ZnO | Ultrasonic impregnation | Photocatalytic degradation of methylene blue dye | High catalytic activity and stability | [61] |
Fe3O4 | Carrier-based synthesis | Activation of persulfate for pollutant removal | Efficient activation; high removal rate of pollutants | [62] |
Co3O4 | Not specified | Fischer–Tropsch synthesis | Decreased specific surface area of SBA-15; co-present as Co3O4 | [63] |
CeO2 | Doping | Biodiesel production from Podocarpus falcatus oil | High biodiesel yield under optimized conditions | [64] |
Fe2O3 | Wet impregnation | Degradation of methylene blue | 70.2% efficiency under visible light irradiation | [65] |
Phosphorous acid | Post-grafting | Adsorption of Gd(III) | Excellent adsorption capacity and kinetics; good reusability | [66] |
Ionic Liquid | Catalyst | Preparation Method | Reaction | Yield | Ref. |
---|---|---|---|---|---|
Pyridinium | SBA-15-Py-SO3H | - | Esterification | 88% (after 5 cycles) | [89] |
Imidazolium | Pd/SBA-15-Im | - | Suzuki coupling | 95% | [93] |
Phosphonium | SBA-15-P(C6H13)3Br | - | Knoevenagel condensation | 92% | [96] |
Brønsted-Lewis | Zr-SBA-15/[mim-ps] Cl-ZnCl2 | Wet impregnation | Esterification of acetic acid with BnOH | 93.6% | [97] |
NMImBr | NMImBr-SBA-15 | - | Propylene oxide and CO2 to propylene carbonate | 98.23% | [98] |
Alkyl-functionalized imidazolium | BCL/IL-SBA-15 | Modification of SBA-15 with alkyl-functionalized ionic liquids | Hydrolysis of triacetin | 2.4 times higher than BCL/SBA-15 | [99] |
Propyl-SO3H | Propyl-SO3H-SBA-15 | Microwave-mediated synthesis | Synthesis of multi-substituted imidazoles | - | [100] |
Functionalized Material | Heavy Metal Ion(s) | Maximum Adsorption Capacity (mg/g) | Optimal pH | Isotherm Model | Ref. |
---|---|---|---|---|---|
Magnetic SBA-15 nanosorbent | Cd(II) | 140 | 5 | - | [35] |
Crown-ether-modified SBA-15 | Zn(II) | - | 5 | Langmuir | [79] |
Amine-functionalized SBA-15 | Cu(II), Cr(III), Co(II), Ni(II), Cd(II), Mn(II), Na(I) | - | 5–6 | - | [125] |
Urea-functionalized SBA-15 | Cr(VI)/Cd(II)/Pb(II) | 26.83/30.53/43.85 | 2.5/5/4 | Langmuir | [126] |
Imidazole-derivatized SBA-15 | Cr(VI) | 113 | 4–5.5 | - | [127] |
N-hydroxysuccini mide-functionalized SBA-15 | Cu(II) | 138.8 | 5.5 | Langmuir | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Zhu, P.; Gu, J.; Yuan, W.; Xiao, B.; Hu, H.; Rao, M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024, 29, 3543. https://doi.org/10.3390/molecules29153543
Liang B, Zhu P, Gu J, Yuan W, Xiao B, Hu H, Rao M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules. 2024; 29(15):3543. https://doi.org/10.3390/molecules29153543
Chicago/Turabian StyleLiang, Binjun, Pingxin Zhu, Jihan Gu, Weiquan Yuan, Bin Xiao, Haixiang Hu, and Mingjun Rao. 2024. "Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives" Molecules 29, no. 15: 3543. https://doi.org/10.3390/molecules29153543
APA StyleLiang, B., Zhu, P., Gu, J., Yuan, W., Xiao, B., Hu, H., & Rao, M. (2024). Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules, 29(15), 3543. https://doi.org/10.3390/molecules29153543