Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers
Abstract
:1. Introduction
2. Fundamentals of Molecular Imprinting
2.1. Reagents for Non-Covalent Imprinting
2.2. Imprinting Strategies
2.2.1. Bulk Imprinting
2.2.2. Surface Imprinting
2.3. Binding Properties
2.3.1. Binding Capacity and Imprinting Factor
2.3.2. Binding Affinity
2.3.3. Cross-Reactivity
2.3.4. Imprinting Efficiency and Template Usage Efficiency
2.3.5. Binding Kinetics
3. Synthesis Methods of Non-Covalently Imprinted Polymers
3.1. Bead-Forming Imprinting
3.2. Solid-Phase Synthesis
3.3. Target Substructure Imprinting
3.4. Hierarchical Imprinting
3.5. Computer-Aided Imprinting
4. Applications of Non-Covalently Imprinted Polymers
4.1. Affinity Separation
4.2. Chemical Sensing
4.2.1. Electrochemical Sensor
4.2.2. Optical Sensors
4.2.3. Mass Sensitive Sensors
4.3. Disease Diagnostics
4.4. Proteomics
4.5. Bioimaging
4.6. Controlled Drug Release
4.7. Catalysis
5. Current Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wulff, G.; Sarhan, A. Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angew. Chem. 1972, 84, 364. [Google Scholar] [CrossRef]
- Vlatakis, G.; Andersson, L.I.; Müller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Wul, G. The kinetic basis of a general method for the investigation of active site content of enzymes and catalytic antibodies: First-order behaviour under single-turnover and cycling conditions. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812–1832. [Google Scholar]
- Shi, H.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593–597. [Google Scholar] [CrossRef]
- Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K.J. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc. 2010, 132, 6644–6645. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, M.V. Adsorption properties of silica gel and its structure. Zh. Fiz. Khim. 1931, 2, 799–805. [Google Scholar]
- Pauling, L. A Theory of the Structure and Process of Formation of Antibodies. J. Am. Chem. Soc. 1940, 62, 2643–2657. [Google Scholar] [CrossRef]
- Pauling, L.; Campbell, D. The manufacture of antibodies in vitro. J. Exp. Med. 1942, 76, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Dickey, F.H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef]
- Curti, R.; Colombo, U. Chromatography of stereoisomers with “tailor made” compounds. J. Am. Chem. Soc. 1952, 74, 3961. [Google Scholar] [CrossRef]
- Dickey, F.H. Specific adsorption. J. Phys. Chem. 1955, 59, 695–707. [Google Scholar] [CrossRef]
- Beckett, A.H.; Anderson, P. A method for the determination of the configuration of organic molecules using ‘stereo-selective adsorbents’. Nature 1957, 179, 1074–1075. [Google Scholar] [CrossRef]
- Erlenmeyer, H.; Bartels, V.H. Über das Problem der Ähnlichkeit in der Chemie Dünnschichtchromatographie mit spezifisch adsorbierenden Silikagelen I. Helv. Chim. Acta 1964, 47, 46–51. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. The Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates. Angew. Chem. Int. Ed. Engl. 1972, 11, 341. [Google Scholar]
- Arshady, R.; Mosbach, M. Synthesis of substrate-selective polymers by host-guest polymerization. Macromol. Chem. Phys.-Makromol. Chem. 1981, 182, 687–692. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 1995, 117, 7105–7111. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2014, 36, 609–628. [Google Scholar] [CrossRef]
- Schirhagl, R. Bioapplications for molecularly imprinted polymers. Anal. Chem. 2014, 86, 250–261. [Google Scholar] [CrossRef]
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Liu, J.W. Molecular Imprinting with Functional DNA. Small 2019, 15, 1805246. [Google Scholar] [CrossRef]
- Wen, Y.H.; Sun, D.N.; Zhang, Y.; Zhang, Z.; Chen, L.X.; Li, J.H. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 2023, 48, 3971–3985. [Google Scholar] [CrossRef]
- Ansari, S.; Masoum, S. Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta 2021, 223, 121411. [Google Scholar] [CrossRef]
- Fang, L.J.; Chen, S.J.; Guo, X.Z.; Zhang, Y.; Zhang, H.Q. Azobenzene-containing molecularly imprinted polymer microspheres with photo-and thermoresponsive template binding properties in pure aqueous media by atom transfer radical polymerization. Langmuir 2012, 28, 9767–9777. [Google Scholar] [CrossRef]
- Tanabe, K.; Takeuchi, T.; Matsui, J.; Ikebukuro, K.; Yano, K.; Karube, I. Recognition of barbiturates in molecularly imprinted copolymers using multiple hydrogen bonding. J. Chem. Soc. Chem. Commun. 1995, 2303–2304. [Google Scholar] [CrossRef]
- Yano, K.; Tanabe, K.; Takeuchi, T.; Matsui, J.; Ikebukuro, K.; Karube, I. Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases. Anal. Chim. Acta 1998, 363, 111–117. [Google Scholar] [CrossRef]
- Wulff, G.; Knorr, K. Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation 2001, 10, 257–276. [Google Scholar] [CrossRef]
- Kostrewa, S.; Emgenbrolch, M.; Klockow, D.; Wulff, G. Surface-enhanced Raman scattering on molecularly imprinted polymers in water. Macromol. Chem. Phys. 2003, 204, 481–487. [Google Scholar] [CrossRef]
- Wulff, G.; Liu, J. Why enzymes are proficient catalysts: Beyond the Pauling paradigm. Acc. Chem. Res. 2005, 38, 379–385. [Google Scholar]
- Spivak, D.; Shea, K.J. Molecular imprinting of carboxylic acids employing novel functional macroporous polymers. J. Org. Chem. 1999, 64, 4627–4634. [Google Scholar] [CrossRef] [PubMed]
- Steinke, J.H.G.; Dunkin, I.R.; Sherrington, D.C. A simple polymerisable carboxylic acid receptor: 2-acrylamido pyridine. Trends Anal. Chem. 1999, 18, 159–164. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Piletska, E.V.; Sergeyeva, T.A.; Nicholis, I.A.; Weston, D.; Turner, A.P.F. Synthesis of biologically active molecules by imprinting polymerisation. Biopolimery i Kletka 2006, 22, 63–67. [Google Scholar] [CrossRef]
- Bruggemann, O.; Frextag, R.; Whitcombe, M.J.; Vulfson, E.N. Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography. J. Chromatogr. A 1997, 781, 43–53. [Google Scholar] [CrossRef]
- Yu, C.; Mosbach, K. Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group. J. Mol. Recognit. 1998, 11, 69–74. [Google Scholar] [CrossRef]
- Hall, A.J.; Manesiotis, P.; Emgenbroich, M.; Quaglia, M.; De Lorenzi, E.; Sellergren, B. Urea host monomers for stoichiometric molecular imprinting of oxyanions. J. Org. Chem. 2005, 70, 1732–1736. [Google Scholar] [CrossRef]
- Gomez, D.E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Urea vs. thiourea in anion recognition. Org. Biomol. Chem. 2005, 3, 1495–1500. [Google Scholar] [CrossRef]
- Emgenbroich, M.; Borrelli, C.; Shinde, S.; Lazraq, I.; Vilela, F.; Hall, A.J.; Oxelbark, J.; Lorenzi, E.D.; Courtois, J.; Simanova, A.; et al. A phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem. Eur. J. 2008, 14, 9516–9529. [Google Scholar] [CrossRef]
- Kugimiya, A.; Takeuchi, T.; Matsui, J.; Ikebukuro, K.; Yano, K.; Karube, I. Recognition in novel molecularly imprinted polymer sialic acid receptors in aqueous media. Anal. Lett. 1996, 29, 1099–1107. [Google Scholar] [CrossRef]
- Turkewitsch, P.; Wandelt, B.; Darling, G.D.; Powell, W.S. Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Anal. Chem. 1998, 70, 2025–2030. [Google Scholar] [CrossRef]
- Ramström, O.; Andersson, L.I.; Mosbach, K. Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J. Org. Chem. 1993, 58, 7562–7564. [Google Scholar] [CrossRef]
- Meng, Z.H.; Wang, J.F.; Zhou, L.M.; Wang, Q.H.; Zhu, D.Q. High performance cocktail functional monomer for making molecule imprinting polymer. Anal. Sci. 1999, 15, 141–144. [Google Scholar] [CrossRef]
- Zayats, M.; Kanwar, M.; Ostermeier, M.; Searson, P.C. Molecular imprinting of maltose binding protein: Tuning protein recognition at the molecular level. Macromolecules 2011, 44, 3966–3972. [Google Scholar] [CrossRef]
- Tappura, K.; Vikholm-Lundin, I.; Albers, W.M. Lipoate-based imprinted self-assembled molecular thin films for biosensor applications. Biosens. Bioelectron. 2007, 22, 912–919. [Google Scholar] [CrossRef]
- Zhang, H.F.; Du, X.Z.; Huang, X.; Lv, Z.P. Creating protein-imprinted self-assembled monolayers with multiple binding sites and biocompatible imprinted cavities. J. Am. Chem. Soc. 2013, 135, 9248–9251. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.R.; Mundo, F.R.D.; Advincula, R.C. Electropolymerized molecularly imprinted polymer films of a bis-terthiophene dendron: Folic acid quartz crystal microbalance sensing. ACS Appl. Mater. Interfaces 2011, 3, 191–203. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.R.; Mundo, F.R.D.; Advincula, R.C. Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A. Macromolecules 2011, 44, 6669–6682. [Google Scholar] [CrossRef]
- Pernites, R.; Ponnapati, R.; Felipe, M.J.; Advincula, R. Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens. Bioelectron. 2011, 26, 2766–2771. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Spivak, D.A. Characterization of Novel Materials for Molecularly Imprinted Polymers using Hybrid Crosslinking Monomers. J. Polym. Sci. A Polym. Chem. 2004, 42, 3668–3675. [Google Scholar]
- Glad, M.; Reinholdsson, P.; Mosbach, K. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. React. Polym. 1995, 25, 47–54. [Google Scholar] [CrossRef]
- Kempe, M. Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal. Chem. 1996, 68, 1948–1953. [Google Scholar] [CrossRef]
- Dong, X.C.; Sun, H.; Lu, X.Y.; Wang, H.B.; Liu, S.X.; Wang, N. Separation of ephedrine stereoisomers by molecularly imprinted polymers—Influence of synthetic conditions and mobile phase compositions on the chromatographic performance. Analyst 2002, 127, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Chen, Y.; Liu, Z. A boronate affinity sandwich assay: An appealing alternative to immunoassays for the determination of glycoproteins. Angew. Chem. Int. Ed. 2014, 53, 10386–10389. [Google Scholar] [CrossRef]
- Bie, Z.J.; Chen, Y.; Ye, J.; Wang, S.S.; Liu, Z. Boronate-affinity glycan-oriented surface imprinting: A new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew. Chem. Int. Ed. 2015, 54, 10211–10215. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Lee, L.Y.S.; So, M.H.; Wong, K.Y. A dopamine electrochemical sensor based on molecularly imprinted poly (acrylamidophenylboronic acid) film. Electroanalysis 2013, 25, 1085–1094. [Google Scholar] [CrossRef]
- Matsui, J.; Nicholls, I.A.; Takeuchi, T. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods. Anal. Chim. Acta 1998, 365, 89–93. [Google Scholar] [CrossRef]
- Dunkin, I.R.; Lenfeld, J.; Sherrington, D.C. Molecular imprinting of flat polycondensed aromatic molecules in macroporous polymers. Polymer 1993, 34, 77–84. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Matuschewski, H.; Schedler, U.; Wilpert, A.; Piletska, E.V.; Thiele, T.A.; Ulbricht, M. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 2000, 33, 3092–3098. [Google Scholar] [CrossRef]
- Kugimiya, A.; Kuwada, Y.; Takeuchi, T. Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy) ethyl phosphate. J. Chromatogr. A 2001, 938, 131–135. [Google Scholar] [CrossRef]
- Gong, C.B.; Lam, M.H.-W.; Yu, H.X. The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv. Funct. Mater. 2006, 16, 1759–1767. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Quan, H.-J.; Gong, C.-B.; Yang, Y.-Z.; Tang, Q.; Wei, Y.-B.; Ma, X.-B.; Lam, H.-W. Photocontrolled solid-phase extraction of guanine from complex samples using a novel photoresponsive molecularly imprinted polymer. Food Chem. 2015, 172, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Cederfur, J.; Pei, Y.X.; Meng, Z.H.; Kempe, M. Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. J. Comb. Chem. 2003, 5, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.Y.; Huang, Y.T.; Huang, H.H.; Hwang, C.C. Synthesis and molecular recognition of molecularly imprinted polymer with ibuprofen as template. J. Chin. Chem. Soc. 2006, 53, 1173–1180. [Google Scholar] [CrossRef]
- Baggiani, C.; Giovannoli, C.; Anfossi, L.; Tozzi, C. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J. Chromatogr. A 2001, 938, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Matsui, J.; Fujiwara, K.; Takeuchi, T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Anal. Chem. 2000, 72, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Molinelli, A.; Weiss, R.; Mizaikoff, B. Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J. Agric. Food Chem. 2002, 50, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Molinelli, A.; Jakusch, M.; Mizaikoff, B. Molecular imprinting and solid phase extraction of flavonoid compounds. Bioseparation 2002, 10, 379–387. [Google Scholar] [CrossRef]
- Weiss, R.; Freudenschuss, M.; Krska, R.; Mizaikoff, B. Improving methods of analysis for mycotoxins: Molecularly imprinted polymers for deoxynivalenol and zearalenone. Food Addit. Contam. 2003, 20, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Mizaikoff, B. Towards analysis of mykotoxins in beverages with molecularly imprinted polymers for deoxynivalenol and zearalenone. Mycotoxin Res. 2002, 18, 89–93. [Google Scholar] [CrossRef]
- Appell, M.; Kendra, D.F.; Kim, E.K.; Maragos, C.M. Synthesis and evaluation of molecularly imprinted polymers as sorbents of moniliformin. Food Addit. Contam. 2007, 24, 43–52. [Google Scholar] [CrossRef]
- Mayes, A.G.; Mosbach, K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 1996, 68, 3769–3774. [Google Scholar] [CrossRef] [PubMed]
- Schweitz, L.; Andersson, L.I.; Nilsson, S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal. Chem. 1997, 69, 1179–1183. [Google Scholar] [CrossRef]
- Svec, F.; Fréchet, J.M.J. Molded rigid monolithic porous polymers: An inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications. Ind. Eng. Chem. Res. 1999, 38, 34–48. [Google Scholar] [CrossRef]
- Deng, Q.L.; Li, Y.L.; Zhang, L.H.; Zhang, Y.K. Molecularly imprinted macroporous monolithic materials for protein recognition. Chin. Chem. Lett. 2011, 22, 1351–1354. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Stepanova, M.A.; Pisarev, O.A.; Tennikova, T.B. Preparation and characterization of macroporous monoliths imprinted with erythromycin. J. Sep. Sci. 2015, 38, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; He, X.; Zhang, W.; Li, W.; Zhang, Y. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. J. Chromatogr. A 2009, 1216, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yang, F.; He, X.W.; Zhao, X.M.; Zhang, Y.K. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography. J. Chromatogr. A 2009, 1216, 8612–8622. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, Y.; Dong, C.; Jin, P.; Qi, J. Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials 2009, 30, 3205–3211. [Google Scholar] [CrossRef]
- Masoumi, M.; Jahanshahi, M. Synthesis and recognition of nano pore molecularly imprinted polymers of thymol on the surface of modified silica nanoparticles. Adv. Polym. Technol. 2016, 35, 221–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Hu, Y.; Li, G. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal. Chem. 2009, 81, 967–976. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 2009, 78, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Şahinb, F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sens. Actuators B 2016, 227, 668–676. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Ji, T.; Yuan, X. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal. Chem. 2009, 81, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, W.; Li, P.; Xiao, H.; Wang, H.; Tang, B. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew. Chem. Int. Ed. 2014, 53, 12489–12493. [Google Scholar] [CrossRef]
- Li, Y.; Yin, X.; Chen, F.; Yang, H.; Zhuang, Z.; Wang, X. Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template. Macromolecules 2006, 39, 4497–4499. [Google Scholar] [CrossRef]
- Cui, J.Y.; Wu, Y.L.; Meng, M.J.; Lu, J.; Wang, C.; Zhao, J.; Yan, Y.S. Bio-inspired synthesis of molecularly imprinted nanocomposite membrane for selective recognition and separation of artemisinin. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Moein, M.M.; Javanbakht, M.; Karimi, M.; Akbari-aderganic, B.; Abdel-Rehimd, M. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol–gel method for the selective separation and screening of L-Tyrosine as a lung cancer biomarker. Analyst 2015, 140, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.M.; Lu, Y.J.; Sung, C.K. Microstructure patterning on glass substrate by imprinting process. Microelectron. Eng. 2009, 86, 577–582. [Google Scholar] [CrossRef]
- Bossi, A.; Piletsky, S.A.; Piletska, E.V.; Righetti, P.G.; Turner, A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73, 5281–5286. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Piletska, E.V.; Bossi, A.; Karim, K.; Lowe, P.; Turner, A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001, 16, 701–707. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Shi, Q.; Tang, W.; Tsung, C.; Hawker, C.J.; Stucky, G.D. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 2007, 129, 14493–14499. [Google Scholar] [CrossRef]
- Long, C.; Mai, Z.; Yang, Y.; Zhu, B.; Xu, X.; Lu, L.; Zou, X. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction. J. Chromatogr. A 2009, 1216, 2275–2281. [Google Scholar] [CrossRef]
- Noriko, F.; Jun, H. Effects of Viola yedoensis Makino anti-itching compound on degranulation and cytokine generation in RBL-2H3 mast cells. J. Chromatogr. A 2012, 1248, 18–23. [Google Scholar]
- Li, G.L.; Mohwald, H.; Shchukin, D.G. Precipitation polymerization for fabrication of complex core–shell hybrid particles and hollow structures. Chem. Soc. Rev. 2013, 42, 3628–3646. [Google Scholar] [CrossRef]
- Sellergren, B. (Ed.) Molecularly Imprinted Polymers: Man-made Mimics of Antibodies and Their Applications in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Hantash, J.; Bartlett, A.; Oldfield, P.; Roudiere, D.; Menduni, S. Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices. J. Chromatogr. A 2006, 1125, 104–111. [Google Scholar] [CrossRef]
- Kempe, H.; Kempe, M. Development and evaluation of spherical molecularly imprinted polymer beads. Anal. Chem. 2006, 78, 3659–3666. [Google Scholar] [CrossRef]
- Thickett, S.C.; Gilbert, R.G. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer 2007, 48, 6965–6991. [Google Scholar] [CrossRef]
- Tan, C.J.; Tong, Y.W. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media. Anal. Chem. 2007, 79, 299–306. [Google Scholar] [CrossRef]
- Tan, C.J.; Chua, H.G.; Ker, K.H.; Tong, Y.W. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core–shell miniemulsion polymerization. Anal. Chem. 2008, 80, 683–692. [Google Scholar] [CrossRef]
- Miura, C.; Matsunaga, H.; Haginaka, J. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves. J. Pharm. Biomed. Anal. 2016, 127, 32–38. [Google Scholar] [CrossRef]
- Carrasco, S.; Benito-Peña, E.; Walt, D.R.; Moreno-Bondi, M.C. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis. Chem. Sci. 2015, 6, 3139–3147. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Chacón, A.; Dinç-Zor, S.; del Valle, M. Integrating molecularly imprinted polymer beads in graphite-epoxy electrodes for the voltammetric biosensing of histamine in wines. Talanta 2020, 208, 120348. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, J.; Chong, Y.K.B.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, X. Evaluation of Enrofloxacin Imprinted Polymeric Microspheres Synthesized with Living/Controlled Radical Polymerization. J. Instrum. Anal. 2008, 27, 1025–1030. [Google Scholar]
- Shi, X.H.; Zhang, W.L.; Zhang, H.Q. Biological sample-compatible Au nanoparticle-containing fluorescent molecularly imprinted polymer microspheres by combining RAFT polymerization and Au–thiol chemistry. J. Mater. Chem. B 2022, 10, 6673–6681. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.J.; Li, Y.N.; Han, J.F.; Dong, X.C. Synthesis of tetracycline-imprinted polymer microspheres by reversible addition-fragmentation chain-transfer precipitation polymerization using polyethylene glycol as a coporogen. J. Sep. Sci. 2014, 37, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.D.; Tian, M.F.; Ahmad, N.; Xie, Y.X.; Xu, C.G.; Liu, J.; Zhao, C.J.; Li, C.Y. A surface multiple imprinting layers membrane with well-oriented recognition sites for selective separation of chlorogenic acid from Ficus carica L. Food Chem. 2024, 433, 137347. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, C.; Zhang, Y.; Guo, X.Z.; Yan, H.S.; Zhang, H.Q. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem. Commun. 2014, 50, 2208–2210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, X.J.; Zhang, H.T.; Yan, H.S.; Zhang, H.Q. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry. Biomacromolecules 2014, 15, 1663–1675. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Wang, Z.Z.; Niu, H.; Zhang, H.Q. One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples. Biosens. Bioelectron. 2016, 86, 580–587. [Google Scholar] [CrossRef]
- Adali-Kaya, Z.; Bui, B.T.S.; Falcimaigne-Cordin, A.; Haupt, K. Molecularly imprinted polymer nanomaterials and nanocomposites: Atom-transfer radical polymerization with acidic monomers. Angew. Chem. Int. Ed. 2015, 54, 5192–5195. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, T.T.; Jin, Y.; Wierzbicka, C.; Wang, F.; Li, J.; Sellergren, B. Synthesis of highly selective molecularly imprinted nanoparticles by a solid-phase imprinting strategy for fluorescence turn-on recognition of phospholipid. Sens. Actuators B Chem. 2022, 368, 132193. [Google Scholar] [CrossRef]
- Fan, J.P.; Tian, J.M.; Zhong, H.; Chen, H.Q.; Xie, C.F.; Chen, H.P.; Peng, H.L.; Liu, Y.D. Synthesis of a porous hollow magnetic molecularly imprinted microsphere by O/W/O composite emulsion polymerization for specifically recognizing bovine serum albumin. Sep. Purif. Technol. 2024, 329, 125197. [Google Scholar] [CrossRef]
- Pluhar, B.; Zienerb, U.; Mizaikoff, B. Binding performance of pepsin surface-imprinted polymer particles in protein mixtures. J. Mater. Chem. B 2015, 3, 6248–6254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Li, Z.Q.; Yan, R.Y.; Wang, G.S.; Wang, Y.M.; Zhang, X.L.; Zhang, Z.X. Facile fabrication of hollow molecularly imprinted polymer microspheres via pickering emulsion polymerization stabilized with TiO2 nanoparticles. Arab. J. Chem. 2023, 16, 105304. [Google Scholar] [CrossRef]
- Fan, T.; Yang, W.M.; Wang, N.W.; Ni, X.N.; Wen, J.; Xu, W.Z. Molecularly imprinted polymer microspheres derived from pickering emulsions polymerization in determination of di (2-ethylhexyl) phthalate in bottled water samples. J. Appl. Polym. Sci. 2016, 133, 43484. [Google Scholar] [CrossRef]
- Yang, J.J.; Li, Y.; Wang, J.C.; Sun, X.L.; Cao, R.; Sun, H.; Huang, C.N.; Chen, J.P. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal. Chim. Acta 2015, 872, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.C.; Zhang, K.; Kamra, T.; Bülowa, L.; Ye, L. Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. J. Mater. Chem. B 2015, 3, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Bonde, J.S.; Kamra, T.; Bulow, L.; Leo, J.C.; Linke, D.; Ye, L. Bacterial imprinting at Pickering emulsion interfaces. Angew. Chem. Int. Ed. 2014, 53, 10687–10690. [Google Scholar] [CrossRef]
- Liu, X.J.; Wu, F.J.; Au, C.T.; Tao, Q.; Pi, M.Y.; Zhang, W.H. Synthesis of molecularly imprinted polymer by suspension polymerization for selective extraction of p-hydroxybenzoic acid from water. J. Appl. Polym. Sci. 2019, 136, 46984. [Google Scholar] [CrossRef]
- Chaipuang, A.; Phungpanya, C.; Thongpoon, C.; Watla-iad, K.; Inkaew, P.; Machan, T.; Suwantong, O. Synthesis of copper (II) ion-imprinted polymers via suspension polymerization. Polym. Advan. Technol. 2018, 29, 3134–3141. [Google Scholar] [CrossRef]
- Sun, H.; Lai, J.P.; Chen, F.; Zhu, D.R. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues. Anal. Bioanal. Chem. 2015, 407, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tang, H.Z.; You, L.Q.; Yuan, L.L.; Liu, Z.M.; Zhu, J.; Lu, K.; Chen, X.Z. Synthesis of fragment-imprinted microspheres of 2, 6-dichloropyrimidine as templates and determination of sulfonamides in milk samples. Chromatographia 2013, 76, 959–965. [Google Scholar] [CrossRef]
- He, J.; Tang, H.Z.; You, L.Q.; Zhan, H.J.; Zhu, J.; Lu, K. Fragment-imprinted microspheres for the extraction of sulfonamides. Microchim. Acta 2013, 180, 903–910. [Google Scholar] [CrossRef]
- Awino, J.K.; Zhao, Y. Protein-mimetic, molecularly imprinted nanoparticles for selective binding of bile salt derivatives in water. J. Am. Chem. Soc. 2013, 135, 12552–12555. [Google Scholar] [CrossRef] [PubMed]
- Awino, J.K.; Zhao, Y. Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with tailored, functionalized, modifiable binding pockets. Chemistry 2015, 21, 655–661. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Liu, Y.; Zhang, C.; Zhou, Y. Magnetic-graphene based molecularly imprinted polymer nanocomposite for the recognition of bovine hemoglobin. Talanta 2015, 144, 411–419. [Google Scholar] [CrossRef]
- Schirhagl, R.; Ren, K.N.; Zare, R.N. Surface-imprinted polymers in microfluidic devices. Sci. China Chem. 2012, 55, 469–483. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Wang, R.; Zhang, P.; Zhang, Y.; Randell, E.; Zhang, M.; Jia, Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal. Chim. Acta 2022, 1234, 340319. [Google Scholar] [CrossRef]
- Mourao, C.A.; Bokeloh, F.; Xu, J.; Prost, E.; Duma, L.; Merlier, F.; Bueno, S.M.A.; Haupt, K.; Tse Sum Bui, B. Dual-oriented solid-phase molecular imprinting: Toward selective artificial receptors for recognition of nucleotides in water. Macromolecules 2017, 50, 7484–7490. [Google Scholar] [CrossRef]
- Çorman, M.E.; Armutcu, C.; Uzun, L.; Say, R.; Denizli, A. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach. Colloids Surf. B 2014, 123, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.J.; Jin, S.Y.; Li, D.R.; Fu, G.Q. Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein. RSC Adv. 2022, 12, 19561–19570. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Lin, M.; Zhang, H.F.; Ji, W.Q.; Shi, Y.H.; Qi, Z.Y.; Fu, T.W.; Li, Q.R.; Deng, Q.L. N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition-fragmentation chain transfer strategy. Chem. Pap. 2022, 76, 3937–3947. [Google Scholar] [CrossRef]
- Zhang, S.T.; Liu, Z.Q.; Jin, S.Y.; Bai, Y.F.; Feng, X.J.; Fu, G.Q. A method for synthesis of oriented epitope-imprinted open-mouthed polymer nanocapsules and their use for fluorescent sensing of target protein. Talanta 2021, 234, 122690. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Zhang, X.M.; Yan, Y.J.; He, X.W.; Li, W.Y.; Zhang, Y.K. Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach. Biosens. Bioelectron. 2016, 79, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.G.; Li, S.W.; Liu, J.X.; Liu, L.K.; Zhang, L.H.; Zhang, Y.K. Multiepitope templates imprinted particles for the simultaneous capture of various target proteins. Anal. Chem. 2016, 88, 5621–5625. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.G.; Liu, J.X.; Li, S.W.; Li, Q.R.; Wu, Q.; Zhou, Y.; Zhao, Q.; Deng, N.; Liang, Z.; Zhang, L.H.; et al. Epitope imprinted polyethersulfone beads by self-assembly for target protein capture from the plasma proteome. Chem. Commun. 2014, 50, 9521–9524. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Yang, K.G.; Deng, N.; Min, Y.; Liu, L.K.; Zhang, L.H.; Zhang, Y.K. Thermoresponsive epitope surface-imprinted nanoparticles for specific capture and release of target protein from human plasma. ACS Appl. Mater. Interfaces 2016, 8, 5747–5751. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Yang, K.G.; Zhao, B.F.; Li, X.; Liu, L.K.; Chen, Y.B.; Zhang, L.H.; Zhang, Y.K. Epitope imprinting enhanced IMAC (EI-IMAC) for highly selective purification of His-tagged protein. J. Mater. Chem. B 2016, 4, 1960–1967. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, C.Y.; Liu, S.; Wu, J.; Chen, Z.B.; Li, C.; Lu, W.Y. Active targeting of tumors through conformational epitope imprinting. Angew. Chem. Int. Ed. 2015, 54, 5157–5160. [Google Scholar] [CrossRef]
- Quezada, C.; Vera, M.; Barraza, L.F.; García, Y.; Pereira, E.D. Molecularly imprinted nanoparticle-based assay (MINA): Potential application for the detection of the neurotoxin domoic acid. Anal. Chim. Acta 2021, 1181, 338887. [Google Scholar] [CrossRef] [PubMed]
- Mier, A.; Maffucci, I.; Merlier, F.; Prost, E.; Montagna, V. Molecularly imprinted polymer nanogels for protein recognition: Direct proof of specific binding sites by solution STD and WaterLOGSY NMR spectroscopies. Angew. Chem. Int. Ed. 2021, 60, 20849–20857. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.; El-Schich, Z.; Malakpour, A.; Wan, W.; Dizeyi, N.; Mohammadi, R.; Rurack, K.; Wingren, A.G.; Sellergren, B. Sialic acid-imprinted fluorescent core–shell particles for selective labeling of cell surface glycans. J. Am. Chem. Soc. 2015, 137, 13908–13912. [Google Scholar] [CrossRef]
- Liu, S.C.; Hu, Z.; Zhang, X.; Huang, H.; Pan, J.M.; Ou, H.X. Fabrication of double imprinted anchor points in cellulose nanocrystals-based hierarchical porous polyHIPEs for selective separation of flavoniods under physiological. J. Hazard. Mater. 2024, 465, 133230. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Long, Y.; Han, Q.; Wang, J.D.; Liang, Q.L.; Ding, M.Y. Polymer-Assisted Hierarchically Bulky Imprinted Microparticles for Enhancing the Selective Enrichment of Proteins. ACS Appl. Bio Mater. 2019, 2, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Deng, Q.L.; Tao, D.Y.; Yang, K.G.; Zhang, L.H.; Liang, Z.; Zhang, Y.K. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum. Sci. Rep. 2014, 4, 5487. [Google Scholar] [CrossRef] [PubMed]
- Nematollahzadeh, A.; Lindemann, P.; Sun, W.; Stute, J.; Lütkemeyer, D.; Sellergren, B. Robust and selective nano cavities for protein separation: An interpenetrating polymer network modified hierarchically protein imprinted hydrogel. J. Chromatogr. A 2014, 1345, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Subramanian, A.; Mueller, S.; Levon, K.; Nam, C.Y.; Rafailovich, M.H. Potentiometric biosensors based on molecular-imprinted self-assembled monolayer films for rapid detection of influenza a virus and SARS-CoV-2 spike protein. ACS Appl. Nano Mater. 2022, 5, 5045–5055. [Google Scholar] [CrossRef]
- Butcha, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. Chem. Sci. 2022, 13, 2339–2346. [Google Scholar] [CrossRef]
- Nie, F.; Li, C.; Qiao, B.; Wang, J.; Gao, Y.; Liu, J.; Zhao, C. Computer-aided design of molecularly imprinted polymer reinforced by double hybrid monomers for selective purification of hydroxycamptothecin. Microchim. Acta 2023, 190, 419. [Google Scholar] [CrossRef]
- Cao, P.; Pichon, V.; Dreanno, C.; Boukerma, K.; Delaunay, N. Development of ion-imprinted polymers for the selective extraction of Cu (II) ions in environmental waters. Talanta 2023, 256, 124295. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.R.; Liang, Z.L.; Wang, J.T. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent. Mar. Pollut. Bull. 2015, 91, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Terzopoulou, Z.; Papageorgiou, M.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices. Anal. Chim. Acta 2016, 913, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Meseguer-Lloret, S.; Torres-Cartas, S.; Gomez-Benito, C.; Herrero-Martínez, J.M. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 2022, 239, 123082. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.F.; Zhang, X.L.; Xu, Z.G.; Duan, Y.L.; Liu, Z.M.; Zhang, Y. Exposure and risk assessment of phthalates in environmental water using a three-template molecularly imprinted fiber array strategy. J. Hazard. Mater. 2024, 461, 132491. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.Y.; Gao, M.Q.; He, M.; Chen, B.B.; Hu, B. Cyromazine imprinted polymers for selective stir bar sorptive extraction of melamine in animal feed and milk samples. Analyst 2015, 140, 4057–4067. [Google Scholar] [CrossRef]
- Gao, R.X.; Cui, X.H.; Hao, Y.; Zhang, L.L.; Liu, D.C.; Tang, Y.H. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem. 2016, 194, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.D.; Shao, G.S.; Zhai, B.W.; Wang, Z.H.; Qin, B.Y.; Wang, T.; Liu, Z.G.; Fu, Y.J. Novel molecularly imprinted aerogels: Preparation, characterization, and application in selective separation for oleanolic acid in lingonberry. Talanta 2024, 266, 124983. [Google Scholar] [CrossRef] [PubMed]
- Saad, E.M.; Madbouly, A.; Ayoub, N.; EI Nashar, R.M. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Anal. Chim. Acta 2015, 877, 80–89. [Google Scholar] [CrossRef]
- Wu, C.M.; Li, T.Y.; Li, D.J.; Jia, S.S.; Huang, J.M.; Lei, H.M.; Zhang, M. Rapid detection of pesticide residues in Chinese herbal medicines by molecularly imprinted membrane electrospray ionization mass spectrometry. Chin. Chem. Lett. 2021, 32, 2174–2178. [Google Scholar] [CrossRef]
- Gao, R.X.; Zhang, L.L.; Hao, Y.; Cui, X.H.; Liu, D.C.; Zhang, M.; Tang, Y.H. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white. Talanta 2015, 144, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Amaly, N.; El-Moghazy, A.Y.; Sun, G. Fabrication of polydopamine-based NIR-light responsive imprinted nanofibrous membrane for effective lysozyme extraction and controlled release from chicken egg white. Food Chem. 2021, 357, 129613. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Han, S.; Sun, R.; Yan, C. UiO66-based molecularly imprinted polymers with water-compatible deep eutectic solvent as functional monomer for purification of lysozyme from egg white. Microchim. Acta 2023, 191, 56. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.Y.; Sun, Y.; Zhang, L.R.; Ding, Q.; Chen, W.; Yu, H.; Liu, Q.Y.; Fu, M. Surface imprinted core–shell nanorod for selective extraction of glycoprotein. J. Colloid. Interf. Sci. 2022, 615, 597–605. [Google Scholar] [CrossRef] [PubMed]
- He, Y.H.; Huang, Y.Y.; Jin, Y.L.; Liu, X.J.; Liu, G.Q.; Zhao, R. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine. ACS Appl. Mater. Interfaces 2014, 6, 9634–9642. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H.A.; Cecil, T.I.; Fines, C.; Pearcy, A.C.; Halquist, M.S. Advancing the use of molecularly imprinted polymers in bioanalysis: The selective extraction of cotinine in human urine. Bioanalysis 2023, 15, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Hedborg, E.; Winquist, F.; Lundström, I.; Andersson, L.I.; Mosbach, K. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sens. Actuators A-Phys. 1993, 37, 796–799. [Google Scholar] [CrossRef]
- Tiwari, M.P.; Prasad, A. Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal. Chim. Acta 2015, 853, 1–18. [Google Scholar] [CrossRef]
- Peng, L.; Yarman, A.; Jetzschmann, K.J.; Jeoung, J.H.; Schad, D.; Dobbek, H.; Wollenberger, U.; Scheller, F.W. Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis. Sensors 2016, 16, 272. [Google Scholar] [CrossRef]
- Udomsap, D.; Branger, C.; Culioli, G.; Dollet, P.; Brisset, H. A versatile electrochemical sensing receptor based on a molecularly imprinted polymer. Chem. Commun. 2014, 50, 7488–7491. [Google Scholar] [CrossRef] [PubMed]
- Fakhari, A.R.; Sahragard, A.; Ahmar, H.; Tabani, H. A novel platform sensing based on combination of electromembrane-assisted solid phase microextraction with linear sweep voltammetry for the determination of tramadol. J. Electroanal. Chem. 2015, 747, 12–19. [Google Scholar] [CrossRef]
- El Gohary, N.A.; Madbouly, A.; El Nashar, R.M.; Mizaikoff, B. Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosens. Bioelectron. 2015, 65, 108–114. [Google Scholar] [CrossRef]
- Luo, J.; Cong, J.J.; Liu, J.; Gao, Y.H.; Liu, X.Y. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol. Anal. Chim. Acta 2015, 864, 74–84. [Google Scholar] [CrossRef]
- Yang, Y.K.; Fang, G.Z.; Wang, X.M.; Pan, M.F.; Qian, H.L.; Liu, H.L.; Wang, S. Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly (pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly (o-phenylenediamine). Anal. Chim. Acta 2014, 806, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, J.S.; Chen, Z.B.; Li, X. Electrochemical determination of butachlor by differential pulse voltammetry (DPV) by an electropolymerized polypyrrole molecular imprinted polymer (MIP) modified glassy carbon electrode (GCE). Anal. Lett. 2023, 56, 2725–2737. [Google Scholar] [CrossRef]
- Basozabal, L.; Guerreiro, A.; Gomez-Caballero, A.; Goicolea, M.A.; Barrio, R.J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144. [Google Scholar] [CrossRef]
- Kozma, J.; Papp, S.; Gyurcsány, R.E. TEMPO-functionalized carbon nanotubes for solid-contact ion-selective electrodes with largely improved potential reproducibility and stability. Anal. Chem. 2022, 94, 8249–8257. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Lim, S.J.; Cho, C.H.; Hazarika, D.; Park, J.P.; Park, J. Determination of tumor necrosis factor-α in serum using extended-gate field-effect transistor-based chemosensors with molecularly imprinted polymer-coated gold dendrites. Sens. Actuators B-Chem. 2023, 390, 133982. [Google Scholar] [CrossRef]
- Lagarde, F. MIP-Based Impedimetric Sensors. Key Eng. Mater. 2013, 543, 499–502. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Acharya, S.; Nag, S.; Das, D.; Roy, R.B. A Novel rGO-Decorated Molecularly Imprinted Polyacrylic Acid Graphite Electrode for the detection of Quercetin in Food. IEEE Trans. Instrum. Meas. 2023, 72, 9512409. [Google Scholar] [CrossRef]
- Carrasco, S.; Canalejas-Tejero, V.; Navarro-Villoslada, F.; Barrios, C.A.; Moreno-Bondi, M.C. Cross-linkable linear copolymer with double functionality: Resist for electron beam nanolithography and molecular imprinting. J. Mater. Chem. C 2014, 2, 1400–1403. [Google Scholar] [CrossRef]
- Burnage, S.C.; Bell, J.; Wan, W.; Kislenko, E.; Rurack, K. Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine. Lab Chip 2023, 23, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, B. Fluorescence detection of bisphenol A in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique. Korean J. Chem. Eng. 2019, 36, 1509–1517. [Google Scholar] [CrossRef]
- Qiao, D.; Deng, Q.L.; Wang, S. Selective Optosensing of Aminoimidazo-Azaarenes (AIAs) by CdSe/ZnS Quantum Dots-embedded Molecularly Imprinted Silica Gel. Curr. Anal. Chem. 2021, 17, 1027–1036. [Google Scholar] [CrossRef]
- Yang, Y.Q.; He, X.W.; Wang, Y.Z.; Li, W.Y.; Zhang, Y.K. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens. Bioelectron. 2014, 54, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Fu, L.; Yin, C.; Wu, M.; Liu, H.; Niu, N.; Chen, L. Construction of biomass carbon dots@ molecularly imprinted polymer fluorescent sensor array for accurate identification of 5-nitroimidazole antibiotics. Sens. Actuators B Chem. 2022, 373, 132716. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, Y.; Wei, R.; Xue, H.; Jiang, J. Difunctional molecularly imprinted polymers and heterostructured CdS nanoparticle-sensitized ZnO nanorod arrays for antibody-free photoelectrochemical alpha-fetoprotein sensor. J. Electroanal. Chem. 2023, 944, 117631. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, K.; Hong, C.; Chen, S.; Lin, Z.; Huang, Z.; Lai, Z. Fluorimetric identification of sulfonamides by carbon dots embedded photonic crystal molecularly imprinted sensor array. Food Chem. 2023, 407, 135045. [Google Scholar] [CrossRef]
- Liao, W.L.; Wang, Q.H.; Hao, J.; Huang, L.J.; Zheng, L.; Yin, Z.H.; Chen, Y.J.; Zhou, Y.T.; Liu, K.P. Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application. Microchem. Acta 2023, 190, 50. [Google Scholar] [CrossRef]
- Chi, H.; Liu, G.Q. A novel dual-template molecularly imprinted polymer ratiometric fluorescence sensor based on three-emission carbon quantum dots for accurate naked-eye detection of aflatoxin B1 and zearalenone in vegetable oil. Microchem. J. 2023, 192, 108961. [Google Scholar] [CrossRef]
- Çapar, N.; Polat, I.; Yola, B.B.; Atar, N.; Yola, M.L. A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for zearalenone determination. Microchem. Acta 2023, 190, 262. [Google Scholar] [CrossRef]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef]
- Moczko, E.; Richard, D.; Camilo, G.; Eduardo, P.; Sergey, P.; Cesar, C. Molecularly Imprinted Nanoparticles Assay (MINA) in Pseudo ELISA: An Alternative to Detect and Quantify Octopamine in Water and Human Urine Samples. Polymers 2019, 11, 1497. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Liu, Z. Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Anal. Chem. 2014, 86, 959–966. [Google Scholar] [CrossRef]
- Aguilar, H.A.; Iliuk, A.B.; Chen, I.H.; Tao, W.A. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles. Nat. Protoc. 2020, 15, 161–180. [Google Scholar] [CrossRef]
- Bensimon, A.; Koch, J.P.; Aebersold, R.; Medová, M. Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol. Oncol. 2020, 14, 1185–1206. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shinde, S.; Koch, M.-H.; Eisenacher, M.; Galozzi, S.; Lerari, T.; Barkovits, K.; Subedi, P.; Krüger, R.; Kuhlmann, K.; et al. Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci. Rep. 2015, 5, 11438. [Google Scholar] [CrossRef] [PubMed]
- Huynh, C.M.; Díez, I.A.; Le Thi, H.K.; Jensen, O.N.; Sellergren, B.; Irgum, K. Terminally Phosphorylated Triblock Polyethers Acting Both as Templates and Pore-Forming Agents for Surface Molecular Imprinting of Monoliths Targeting Phosphopeptides. ACS Omega 2023, 8, 8791–8803. [Google Scholar] [CrossRef]
- Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Béea, A.; Ménager, C. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions. Nanoscale 2015, 7, 18891–18896. [Google Scholar] [CrossRef]
- Chen, J.X.; Lei, S.; Xie, Y.Y.; Wang, M.Z.; Yang, J.; Ge, X.W. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces 2015, 7, 28606–28615. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Song, Y.Z.; Liu, S.W.; Zhao, L.; Sun, R.A. Dual responsive molecularly imprinted polymers based on UiO-66-DOX for selective targeting tumor cells and controlled drug release. Eur. Polym. J. 2022, 171, 111219. [Google Scholar] [CrossRef]
- Li, S.J.; Pilla, S.; Gong, S.Q. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. J. Polym. Sci. A 2009, 47, 2352–2360. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.W.; Yang, X.T.; Zhu, Y.Z.; Wang, H.F. Afterglow-catalysis and molecular imprinting: A promising union for elevating selectivity in degradation of antibiotics. Appl. Catal. B-Environ. 2022, 35, 121025. [Google Scholar] [CrossRef]
- Urraca, J.L.; Aureliano, C.S.; Schillinger, E.; Esselmann, H.; Wiltfang, J.; Sellergren, B. Polymeric complements to the Alzheimer’s disease biomarker β-amyloid isoforms Aβ1–40 and Aβ1–42 for blood serum analysis under denaturing conditions. J. Am. Chem. Soc. 2011, 133, 9220–9223. [Google Scholar] [CrossRef]
- Cenci, L.; Anesi, A.; Busato, M.; Guella, G.; Bossi, A.M. Molecularly imprinted polymers coupled to matrix assisted laser desorption ionization mass spectrometry for femtomoles detection of cardiac troponin I peptides. J. Mol. Recognit. 2016, 29, 41–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, D.; Wang, C.; Gao, L.; Nie, C. Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers. Molecules 2024, 29, 3555. https://doi.org/10.3390/molecules29153555
Hong D, Wang C, Gao L, Nie C. Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers. Molecules. 2024; 29(15):3555. https://doi.org/10.3390/molecules29153555
Chicago/Turabian StyleHong, Dongfeng, Changzhao Wang, Liujing Gao, and Caijian Nie. 2024. "Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers" Molecules 29, no. 15: 3555. https://doi.org/10.3390/molecules29153555
APA StyleHong, D., Wang, C., Gao, L., & Nie, C. (2024). Fundamentals, Synthetic Strategies and Applications of Non-Covalently Imprinted Polymers. Molecules, 29(15), 3555. https://doi.org/10.3390/molecules29153555