Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Analogs 1–8
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
(a) | |||||||||||||
Analog | μg/mL | UJA7m | UJA11c | UJA11e | UJA27g | UJA27q | UJA29o | UJA32j | UJA34f | UJA35h | UJA37p | UJA40k | UJA40l |
1 | 1000 | <10 | 14 | 10 | |||||||||
100 | <10 | <10 | |||||||||||
2 | 100 | 10 | 10 | 10 | 10 | 20 | 15 | ||||||
10 | 10 | 10 | |||||||||||
3 | 1 | 10 | 14 | 18 | 12 | ||||||||
100 | <10 | 12 | |||||||||||
4 | 1000 | 30 | 20 | 10 | 10 | 10 | 40 | 20 | 20 | 20 | 10 | 10 | 10 |
5 | 1000 | 10 | 12 | 10 | |||||||||
6 | 100 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | |||||
7 | 1000 | 11 | 13 | 19 | 12 | ||||||||
100 | 10 | ||||||||||||
8 | 100 | 10 | 20 | 10 | 15 | 10 | 20 | 20 | 20 | 15 | 10 | 10 | 20 |
(b) | |||||||||||||
Analog | μg/mL | S. aureus CECT 828 | S. aureus CECT 976 | L. innocua CECT 910 | E. coli CCUG 47553 | E. coli CCUG 47557 | S. enterica CECT 4300 | S. enterica CECT409 | S. enterica CECT 4395 | S. enterica CECT 915 | |||
1 | 100 | 12 | 11 | ||||||||||
2 | 100 | 30 | 30 | 30 | 10 | ||||||||
10 | 10 | ||||||||||||
3 | 100 | <10 | |||||||||||
4 | 100 | 80 | 60 | 60 | 20 | 15 | 10 | 20 | 20 | 10 | |||
10 | 30 | 30 | 30 | ||||||||||
5 | 100 | <10 | <10 | <10 | |||||||||
6 | 100 | 10 | 30 | 10 | |||||||||
7 | 100 | <10 | <10 | ||||||||||
8 | 100 | 70 | 40 | 70 | 20 | 20 | 10 | 10 | 10 | 10 | |||
10 | 30 | 30 |
(a) | ||||||||||||
Analog | UJA7m | UJA11c | UJA11e | UJA27g | UJA27q | UJA29o | UJA32j | UJA34f | UJA35h | UJA37p | UJA40k | UJA40l |
1 | a | a | a | 10 | 10 | a | a | 10 | 50 | a | a | a |
2 | 50 | 50 | 50 | 50 | a | a | a | 50 | 10 | a | 50 | 10 |
3 | a | a | a | 10 | 10 | a | a | 10 | 50 | a | a | a |
4 | 50 | 50 | 50 | 50 | 10 | 50 | 50 | 50 | 10 | 100 | 50 | 10 |
5 | a | a | a | 10 | 10 | a | a | 10 | 10 | a | a | a |
6 | a | 10 | 10 | 10 | 50 | a | a | a | 50 | a | a | 10 |
7 | a | a | a | 10 | 10 | a | a | 10 | 10 | a | a | a |
8 | 50 | 10 | 50 | 10 | 10 | 50 | 50 | 10 | 10 | 100 | 50 | 10 |
(b) | ||||||||||||
Analog | S. aureus CECT 828 | S. aureus CECT 976 | L. innocua CECT 910 | E. coli CCUG47553 | E. coli CCUG47557 | S. enterica CECT 4300 | S. enterica CECT 409 | S. enterica CECT 4395 | S. enterica CECT 915 | |||
1 | 50 | 50 | a | a | a | a | a | a | a | |||
2 | 10 | 10 | 50 | 50 | a | a | a | a | 50 | |||
3 | 50 | 50 | a | a | a | a | a | a | a | |||
4 | 10 | 10 | 10 | 100 | 100 | 100 | 100 | 100 | 50 | |||
5 | 50 | 50 | 50 | a | a | a | a | a | a | |||
6 | 10 | 10 | 10 | a | a | a | a | a | a | |||
7 | 50 | 50 | 50 | a | a | a | a | a | a | |||
8 | 10 | 10 | 10 | 100 | 100 | a | 100 | a | 100 |
2.4. Antibiofilm Activities
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. General Procedure A for the Synthesis of Flavylium Salts (13–16)
3.3. General Procedure B for the Synthesis of 2,8-Dioxabicyclo[3.3.1]nonane Derivatives (1–8)
3.3.1. 6-Chloro-2-(4′-hydroxyphenyl)-chromane-(4→4, 2→O-3)-resorcinol (6)
3.3.2. 6-Bromo-2-(4′-hydroxyphenyl)-chromane-(4→4, 2→O-3)-resorcinol (8)
3.4. DPPH Radical-Scavenging Activity
3.5. Rancimat Assay
3.6. Antimicrobial Activity
3.7. Checkerboard Titer Tests
3.8. Biofilm Formation Inhibition Assay
3.9. Disruption of Preformed Biofilm
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heiranian, M.; Farimani, A.B.; Aluru, N.R. Water desalination with a singlelayer MoS2 nanopore. Nat. Commun. 2015, 6, 8616. [Google Scholar] [CrossRef] [PubMed]
- CDC Database. Data from National Outbreak Reporting System (NORS) of Centers for Disease Control and Prevention (CDC). 2021. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 1 December 2021).
- Rather, M.A.; Gupta, K.; Bardhan, P.; Borah, M.; Sarkar, A.; Eldiehy, K.S.H.; Bhuyan, S.; Mandal, M. Microbial biofilm: A matter of grave concern for human health and food industry. J. Basic Microbiol. 2021, 61, 380–395. [Google Scholar] [CrossRef]
- Ma, Y.; Zohaib Aslam, M.; Wu, M.; Nitin, N.; Sun, G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Res. Int. 2022, 159, 111543. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, X.; Bai, R.; Liu, Y.; Liu, J.; Liu, J. Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int. J. Biol. Macromol. 2019, 134, 11–19. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Glibota, N.; Frías, M.P.; Altarejos, J.; Galvez, A.; Salido, S.; Ortega-Morente, E. Synthesis and evaluation of antimicrobial and antibiofilm properties of A-type procyanidin analogues against resistant bacteria in food. J. Agric. Food Chem. 2018, 66, 2151–2158. [Google Scholar] [CrossRef]
- Cobo, A.; Alejo-Armijo, A.; Cruz, D.; Altarejos, J.; Salido, S.; Ortega-Morente, E. Synthesis of analogs to A-type proanthocyanidin natural products with enhanced antimicrobial properties against foodborne microorganisms. Molecules 2023, 28, 4844. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Cuadrado, C.; Altarejos, J.; Fernandes, M.X.; Salido, E.; Diaz-Gavilan, M.; Salido, S. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias. Bioorg. Chem. 2022, 129, 106127–106139. [Google Scholar] [CrossRef] [PubMed]
- Salido, S.; Alejo-Armijo, A.; Altarejos, J. Synthesis and hLDH inhibitory activity of analogues to natural products with 2,8-dioxabicyclo[3.3.1]nonane scaffold. Int. J. Mol. Sci. 2023, 24, 9925. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, A.; Castañeda-Arriaga, R.; Guzman-Lopez, E.G.; Hernandez-Ayala, L.F.; Galano, A. Chalcone derivatives with a high potential as multifunctional antioxidant neuroprotectors. ACS Omega 2022, 7, 38254–38268. [Google Scholar] [CrossRef]
- Abdallah, M.; Benoliel, C.; Drider, D.; Dhulster, P.; Chihib, N.E. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 2014, 196, 453–472. [Google Scholar] [CrossRef]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef]
- Yin, W.; Xu, S.; Wang, Y.; Zhang, Y.; Chou, S.H.; Galperin, M.Y.; He, J. Ways to control harmful biofilms: Prevention, inhibition, and eradication. Crit. Rev. Microbiol. 2021, 47, 57–78. [Google Scholar] [CrossRef]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Armarego, W.L.F. Purification of Laboratory Chemicals, 8th ed.; Butterworth Heinemann: Burlington, MA, USA, 2017. [Google Scholar]
- Calogero, G.; Sinopoli, A.; Citro, I.; Di Marco, G.; Petrov, V.; Diniz, A.M.; Parola, A.J.; Pina, F. Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochem. Photobiol. Sci. 2013, 12, 883–894. [Google Scholar] [CrossRef]
- Kraus, G.; Yuan, Y.; Kempema, A. A convenient synthesis of type A procyanidins. Molecules 2009, 14, 807–815. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Von Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of Aspalathin with that of other plant phenols of Rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J. Agric. Food Chem. 1997, 45, 632–638. [Google Scholar] [CrossRef]
- Läubli, M.W.; Bruttel, P.A. Determination of the oxidative stability of fats and oils: Comparison between the active oxygen method(AOCS Cd 12–57) and the Rancimat method. J. Am. Oil Chem. Soc. 1986, 63, 792–795. [Google Scholar] [CrossRef]
- Farhoosh, R. Shelf-life prediction of edible fats and oils using Rancimat. Lipid Technol. 2007, 19, 232–234. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement; Document M100eS24, No. 3; CLSI: Wayne, PA, USA, 2015; Volume 34. [Google Scholar]
- Fernández-Fuentes, M.A.; Ortega-Morente, E.; Abriouel, H.; Pérez-Pulido, R.; Gálvez, A. Isolation and identification of bacteria from organic foods: Sensitivity to biocides and antibiotics. Food Control 2012, 26, 73–78. [Google Scholar] [CrossRef]
- Rukayadi, Y.; Lee, K.; Lee, M.-S.; Yong, D.; Hwang, J.-K. Synergistic anticandidal activity of xanthorrhizol in combination with ketoconazole or amphotericin B. FEMS Yeast Res. 2009, 9, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Wu, X.; Yu, L.; Liu, J.; Meng, R.; Jin, J.; Lu, H.; Wang, X.; Yan, S.; Deng, X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol. Med. Microbiol. 2010, 58, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499–511. [Google Scholar] [CrossRef] [PubMed]
Compound | EC50 b | PF c |
---|---|---|
1 | 0.29 ± 0.01 | 1.18 ± 0.01 |
2 | 5.06 ± 0.19 | 0.92± 0.01 |
3 | 0.30 ± 0.02 | 1.25 ± 0.02 |
4 | 6.58 ± 0.08 | 1.06 ± 0.01 |
5 | 0.31 ± 0.01 | 1.31 ± 0.02 |
6 | >12 | 1.03 ± 0.01 |
7 | 0.30 ± 0.01 | 1.19 ± 0.01 |
8 | >12 | 1.01 ± 0.01 |
Trolox d | 0.24 ± 0.01 | - |
Cinnamtannin B-1 (C-B1) d | - | 1.06 ± 0.01 |
Analog | Inhibition of Biofilm Formation of at Least 75% |
---|---|
1 | UJA7m (10 µg/mL, 0.01 µg/mL) UJA11c (1 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27q (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA29o (0.1 µg/mL, 0.01 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA34f (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA35h (10 µg/mL) UJA37p (10 µg/mL) UJA40k (10 µg/mL, 1 µg/mL, 0.01 µg/mL) |
2 | UJA7m (1 µg/mL) UJA34f (1 µg/mL) Salmonella enterica CECT 915 (0.001 µg/mL) Escherichia coli CCUG 47553 (1 µg/mL) Listeria innocua CECT 910 (1 µg/mL) |
3 | UJA7m (10 µg/mL) UJA32j (10 µg/mL) UJA34f (10 µg/mL, 1 µg/mL) UJA35h (0.01 µg/mL) UJA40l (10 µg/mL) |
4 | UJA7m (1 µg/mL) UJA27g (10 µg/mL) UJA27q (10 µg/mL) Staphylococcus aureus CECT 828 (0.001 µg/mL) Escherichia coli CCUG 47557 (10 µg/mL) Salmonella enterica CECT 4300 (10 µg/mL) Salmonella enterica CECT 409 (50 µg/mL) Escherichia coli CCUG 47553 (50 µg/mL) |
5 | UJA11c (10 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL, 0.01 µg/mL) UJA27q (10 µg/mL, 0.01 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.1 µg/mL) UJA34f (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA35h (0.1 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL, 1 µg/mL, 0.1 µg/mL) UJA40k (1 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
7 | UJA7m (0.1 µg/mL, 0.01 µg/mL) UJA11c (0.1 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA29o (10 µg/mL, 1 µg/mL, 0.1 µg/mL) UJA32j (10 µg/mL, 0.1 µg/mL) UJA37p (1 µg/mL, 0.1 µg/mL) |
8 | UJA7m (10 µg/mL, 1 µg/mL, 0.1 µg/mL) UJA11e (10 µg/mL) UJA29o (50 µg/mL, 0.1 µg/mL) UJA32j (0.01 µg/mL) Salmonella enterica CECT 915 (10 µg/mL) Escherichia coli CCUG 47553 (50 µg/mL) Escherichia coli CCUG 47557 (10 µg/mL) |
Analog | Disruption of at Least 75% of Preformed Biofilms |
---|---|
1 | UJA7m (10 µg/mL) UJA11c (0.1 µg/mL, 0.01 µg/mL) UJA11e (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA29o (10 µg/mL, 0.1 µg/mL) UJA32j (0.01 µg/mL) UJA35h (0.1 µg/mL, 0.01 µg/mL) UJA37p (0.1 µg/mL, 0.01 µg/mL) UJA40k (0.1 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
3 | UJA7m (0.01 µg/mL) UJA11e (0.1 µg/mL, 0.01 µg/mL) UJA32j (0.01 µg/mL) |
4 | UJA7m (10 µg/mL) UJA27q (1 µg/mL, 0.01 µg/mL) Staphylococcus aureus CECT 828 (1 µg/mL, 0.01 µg/mL, 0.001 µg/mL) Staphylococcus aureus CECT 976 (1 µg/mL) Salmonella enterica CECT 915 (10 µg/mL, 1 µg/mL) |
5 | UJA7m (0.01 µg/mL) UJA11c (0.01 µg/mL) UJA11e (0.01 µg/mL) UJA27q (10 µg/mL) UJA32j (10 µg/mL, 1 µg/mL) UJA34f (0.1 µg/mL, 0.01 µg/mL) UJA35h (1 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA40k (1 µg/mL, 0.01 µg/mL) UJA40l (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
7 | UJA7m (0.01 µg/mL) UJA11c (10 µg/mL, 0.01 µg/mL) UJA11e (0.01 µg/mL) UJA27g (0.1 µg/mL) UJA29o (0.1 µg/mL) UJA32j (0.1 µg/mL) UJA34f (10 µg/mL, 0.1 µg/mL,) UJA37p (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
8 | UJA7m (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA11c (0.001 µg/mL) UJA11e (10 µg/mL) UJA27q (0.001 µg/mL) UJA29o (10 µg/mL) UJA34f (1 µg/mL, 0.1 µg/mL, 0.001 µg/mL) UJA35h (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL, 0.001 µg/mL) Staphylococcus aureus CECT 828 (0.001 µg/mL) Escherichia coli CCUG 47553 (50 µg/mL) Listeria innocua CECT 910 (0.001 µg/mL) |
Strains from Type-Culture Collections | Resistant Strains from Organic Foods |
---|---|
Salmonella enterica CECT 915 | Bacillus cereus UJA27q |
Salmonella enterica CECT 4300 | Enterococcus casseliflavus UJA11e |
Escherichia coli CCUG 47553 | Enterococcus faecium UJA11c |
Escherichia coli CCUG 47557 | Staphylococcus aureus UJA34f |
Staphylococcus aureus CECT 828 | Staphylococcus saprophyticus UJA27g |
Staphylococcus aureus CECT 976 | Lactobacillus casei UJA35h |
Staphylococcus aureus CECT 4465 | Enterobacter sp. UJA37p |
Listeria monocytogenes CECT 4032 | Pantoea agglomerans UJA7m |
Pantoea agglomerans UJA29o | |
Klebsiella terrigena UJA32j | |
Salmonella sp. UJA40k | |
Salmonella sp. UJA40l |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobo, A.; Alejo-Armijo, A.; Cruz, D.; Altarejos, J.; Salido, S.; Ortega-Morente, E. Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries. Molecules 2024, 29, 3622. https://doi.org/10.3390/molecules29153622
Cobo A, Alejo-Armijo A, Cruz D, Altarejos J, Salido S, Ortega-Morente E. Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries. Molecules. 2024; 29(15):3622. https://doi.org/10.3390/molecules29153622
Chicago/Turabian StyleCobo, Antonio, Alfonso Alejo-Armijo, Daniel Cruz, Joaquín Altarejos, Sofía Salido, and Elena Ortega-Morente. 2024. "Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries" Molecules 29, no. 15: 3622. https://doi.org/10.3390/molecules29153622
APA StyleCobo, A., Alejo-Armijo, A., Cruz, D., Altarejos, J., Salido, S., & Ortega-Morente, E. (2024). Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries. Molecules, 29(15), 3622. https://doi.org/10.3390/molecules29153622