Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies
Abstract
:1. Introduction
2. cGAS-STING Signaling Pathway with Photothermal Therapy
3. cGAS-STING Signaling Pathway with Photodynamic Therapy
4. cGAS-STING Signaling Pathway with Sonodynamic Therapy
Therapy | References | ||
---|---|---|---|
Photothermal Therapy | Photothermal Transduction Agents | STING agonist | |
Indocyanine green | DMXAA | [30,57,66] | |
Croconaine dye IR1024 | DiABZIs | [60,67,68] | |
DTTB | DMXAA | [55,56,57] | |
Prussian blue | Manganese | [64,65,69,70] | |
Polydopamine | Manganese | [63,70,71] | |
Photodynamic Therapy | Photosensitizers | STING agonist | |
Verteporfin | ADU-S100 | [93,94,97] | |
Meso-tetra(carboxyphenyl) porphyrin (TCPP) | SR-717 | [95,96,98] | |
MHI148 | 2′3′-cGAMP | [31,90,99] | |
Sonodynamic Therapy | Sonosensitizers | STING agonist | |
Semiconducting polymer | MSA-2 | [112,113,114,120] | |
Hematoporphyrin monomethyl ether | SR-717 | [95,115,116] | |
Zinc oxide | Zinc ions | [117,118,119] |
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef]
- Li, Y.; Qi, H.; Geng, Y.; Li, L.; Cai, X. Research progress of organic photothermal agents delivery and synergistic therapy systems. Colloids Surf. Biointerfaces 2024, 234, 113743. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Sun, T.; Zhang, L.; Zhou, C.; Xu, Z.; Du, M.; Xiao, S.; Liu, Y.; Gong, M.; Zhang, D. Synergistic Theranostics of Magnetic Resonance Imaging and Photothermal Therapy of Breast Cancer Based on the Janus Nanostructures Fe3O4-Au(shell)-PEG. Int. J. Nanomed. 2021, 16, 6383–6394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, Q.; Chen, Q.; Zhao, X.; Pennycook, S.J.; Chen, H. Highly Efficient 2D NIR-II Photothermal Agent with Fenton Catalytic Activity for Cancer Synergistic Photothermal-Chemodynamic Therapy. Adv. Sci. 2020, 7, 1902576. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, J.; González González, D.; van Rhoon, G.C.; van Dijk, J.D.; van Putten, W.L.; Hart, A.A. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000, 355, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Cheng, K.; Chen, Y.; Yang, R.; Chen, D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med. 2021, 10, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Hu, C.; Hou, B.; Xie, S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv. 2022, 12, 22722–22747. [Google Scholar] [CrossRef]
- Kong, C.; Chen, X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int. J. Nanomed. 2022, 17, 6427–6446. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, P.; Wang, X.; Guo, L.; Li, S.; Liu, Q. Involvement of MAPK activation and ROS generation in human leukemia U937 cells undergoing apoptosis in response to sonodynamic therapy. Int. J. Radiat. Biol. 2013, 89, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Pandey, V.; Jajoria, K.; Bhatia, D.; Gupta, I.; Shekhar, H. Glycosylated Porphyrin Derivatives for Sonodynamic Therapy: ROS Generation and Cytotoxicity Studies in Breast Cancer Cells. ACS Omega 2024, 9, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A. Incorporating Immunotherapy Into the Treatment of Non-Small Cell Lung Cancer: Practical Guidance for the Clinic. Semin. Oncol. 2015, 42, S19–S28. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Saeed, A. Immunotherapy in Colorectal Cancer—Finding the Achilles’ Heel. NEJM Evid. 2024, 3, EVIDra2300353. [Google Scholar] [CrossRef] [PubMed]
- Rios-Hoyo, A.; Arriola, E. Immunotherapy and brain metastasis in lung cancer: Connecting bench side science to the clinic. Front. Immunol. 2023, 14, 1221097. [Google Scholar] [CrossRef] [PubMed]
- Fenton, G.A.; Mitchell, D.A. Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clin. Cancer Res. 2023, 29, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef]
- Dunphy, G.; Flannery, S.M.; Almine, J.F.; Connolly, D.J.; Paulus, C.; Jonsson, K.L.; Jakobsen, M.R.; Nevels, M.M.; Bowie, A.G.; Unterholzner, L. Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-kappaB Signaling after Nuclear DNA Damage. Mol. Cell 2018, 71, 745–760.E5. [Google Scholar] [CrossRef]
- Li, X.D.; Wu, J.; Gao, D.; Wang, H.; Sun, L.; Chen, Z.J. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013, 341, 1390–1394. [Google Scholar] [CrossRef]
- Kemp, M.G.; Lindsey-Boltz, L.A.; Sancar, A. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1). J. Biol. Chem. 2015, 290, 12184–12194. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Z.; Cheng, W.C.; Chen, S.F.; Nieh, S.; O’Connor, C.; Liu, C.L.; Tsai, W.W.; Wu, C.J.; Martin, L.; Lin, Y.S.; et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat. Cell Biol. 2017, 19, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Pu, F.; Chen, F.; Liu, J.; Zhang, Z.; Shao, Z. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. OncoTargets Ther. 2021, 14, 1501–1516. [Google Scholar] [CrossRef] [PubMed]
- Garland, K.M.; Sheehy, T.L.; Wilson, J.T. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem. Rev. 2022, 122, 5977–6039. [Google Scholar] [CrossRef] [PubMed]
- Czapla, J.; Drzyzga, A.; Matuszczak, S.; Cichon, T.; Rusin, M.; Jarosz-Biej, M.; Pilny, E.; Smolarczyk, R. Antitumor effect of anti-vascular therapy with STING agonist depends on the tumor microenvironment context. Front. Oncol. 2023, 13, 1249524. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Dai, J.; Tang, L.; Sun, L.; Si, L.; Guo, J. Systemic administration of STING agonist promotes myeloid cells maturation and antitumor immunity through regulating hematopoietic stem and progenitor cell fate. Cancer Immunol. Immunother. 2023, 72, 3491–3505. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Xia, T.; Konno, H.; Konno, K.; Ruiz, P.; Barber, G.N. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 2014, 5, 5166. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, Y.J.; Dobbs, N.; Sakai, T.; Liou, J.; Miner, J.J.; Yan, N. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 2019, 216, 867–883. [Google Scholar] [CrossRef]
- Chen, C.; Hu, M.; Cao, Y.; Zhu, B.; Chen, J.; Li, Y.; Shao, J.; Zhou, S.; Shan, P.; Zheng, C.; et al. Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy. Biomacromolecules 2023, 24, 2790–2803. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Q.; Zheng, M.; Wang, R.; Wang, H.; Cheng, L.; Hu, Y.; Dai, M.; Du, C.; Luo, W.; et al. Combination of MHI148 Targeted Photodynamic Therapy and STING Activation Inhibits Tumor Metastasis and Recurrence. ACS Appl. Mater. 2024, 16, 29672–29685. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xue, X.; Panda, S.; Kawale, A.; Hooy, R.M.; Liang, F.; Sohn, J.; Sung, P.; Gekara, N.O. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019, 38, e102718. [Google Scholar] [CrossRef] [PubMed]
- Jie, C.; Li, R.; Cheng, Y.; Wang, Z.; Wu, Q.; Xie, C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front. Immunol. 2023, 14, 1122352. [Google Scholar] [CrossRef]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Yang, N.; Li, J.; Yu, S.; Xia, G.; Li, D.; Yuan, L.; Wang, Q.; Ding, L.; Fan, Z.; Li, J. Application of Nanomaterial-Based Sonodynamic Therapy in Tumor Therapy. Pharmaceutics 2024, 16, 603. [Google Scholar] [CrossRef]
- An, C.; Li, Z.; Chen, Y.; Huang, S.; Yang, F.; Hu, Y.; Xu, T.; Zhang, C.; Ge, S. The cGAS-STING pathway in cardiovascular diseases: From basic research to clinical perspectives. Cell Biosci. 2024, 14, 58. [Google Scholar] [CrossRef]
- Xie, F.; Zhu, Q. The regulation of cGAS-STING signaling by RNA virus-derived components. Viro. J. 2024, 21, 101. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, N.W.; Gerber, N.K.; Vatner, R.E.; Cooper, B.T. Harnessing the cGAS-STING pathway to potentiate radiation therapy: Current approaches and future directions. Front. Pharmacol. 2024, 15, 1383000. [Google Scholar] [CrossRef]
- Song, C.W. Effect of Local Hyperthermia on Blood Flow and Microenvironment: A Review. Cancer Res. 1984, 44, 4721s–4730s. [Google Scholar]
- Song, C.W.; Rhee, J.G.; Levitt, S.H. Blood flow in normal tissues and tumors during hyperthermia. J. Natl. Cancer Inst. 1980, 64, 119–124. [Google Scholar] [CrossRef]
- Azocar, J.; Yunis, E.J.; Essex, M. Sensitivity of human natural killer cells to hyperthermia. Lancet 1982, 319, 16–17. [Google Scholar] [CrossRef]
- Ostberg, J.R.; Dayanc, B.E.; Yuan, M.; Oflazoglu, E.; Repasky, E.A. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J. Leukoc. Biol. 2007, 82, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xu, Y.; Wu, Q.; Hu, P.; Shi, J. Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. J. Am. Chem. Soc. 2021, 143, 8116–8128. [Google Scholar] [CrossRef] [PubMed]
- Burd, R.; Dziedzic, T.S.; Xu, Y.; Caligiuri, M.A.; Subjeck, J.R.; Repasky, E.A. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J. Cell. Physiol. 1998, 177, 137–147. [Google Scholar] [CrossRef]
- Nag, S.; Mitra, O.; Tripathi, G.; Adur, I.; Mohanto, S.; Nama, M.; Samanta, S.; Gowda, B.H.J.; Subramaniyan, V.; Sundararajan, V.; et al. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn. Ther. 2024, 45, 103959. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol. Pharm. 2021, 18, 3671–3718. [Google Scholar] [CrossRef] [PubMed]
- Poursalehi, Z.; Salehi, R.; Samadi, N.; Rasta, S.H.; Mansoori, B.; Majdi, H. A simple strategy for chemo-photothermal ablation of breast cancer cells by novel smart gold nanoparticles. Photodiagnosis Photodyn. Ther. 2019, 28, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Huilgol, N.G.; Gupta, S.; Sridhar, C.R. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial. J. Cancer Res. Ther. 2010, 6, 492–496. [Google Scholar] [CrossRef]
- Tang, Y.; Bisoyi, H.K.; Chen, X.M.; Liu, Z.; Chen, X.; Zhang, S.; Li, Q. Pyroptosis-Mediated Synergistic Photodynamic and Photothermal Immunotherapy Enabled by a Tumor-Membrane-Targeted Photosensitive Dimer. Adv. Mater. 2023, 35, e2300232. [Google Scholar] [CrossRef]
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023, 20, 432–447. [Google Scholar] [CrossRef]
- Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, G.; Hu, Z.; Chen, G.; Chen, J.; Lv, Z. cGAMP inhibits tumor growth in colorectal cancer metastasis through the STING/STAT3 axis in a zebrafish xenograft model. Fish Shellfish. Immunol. 2019, 95, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Koshy, S.T.; Cheung, A.S.; Gu, L.; Graveline, A.R.; Mooney, D.J. Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Adv. Biosyst. 2017, 1, 2366–7478. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Yang, Y.; Liao, F.; Chen, H.; He, D.; Li, S.; Li, P.; Guo, W.; Xiao, Y. NIR-II fluorescence and PA imaging guided activation of STING pathway in photothermal therapy for boosting cancer immunotherapy by theranostic thermosensitive liposomes. J. Mater. Chem. B 2023, 11, 8528–8540. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Liu, H.; Liu, L.; Yuan, Y.; Mao, C.; Zhang, W.; Zhang, X.; Guo, W.; Lee, C.-S.; et al. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano 2020, 14, 13681–13690. [Google Scholar] [CrossRef] [PubMed]
- Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.-R.; Lemmens, E.; Banda, T.; Leong, J.J.; et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015, 11, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.N., Jr.; Douillard, J.Y.; Nakagawa, K.; von Pawel, J.; McKeage, M.J.; Albert, I.; Losonczy, G.; Reck, M.; Heo, D.S.; Fan, X.; et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol. 2011, 29, 2965–2971. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.; Burdette, D.L.; Sharma, S.; Bhat, N.; Thompson, M.; Jiang, Z.; Rathinam, V.A.; Monks, B.; Jin, T.; Xiao, T.S.; et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immuno. 2013, 190, 5216–5225. [Google Scholar] [CrossRef]
- Ma, W.; Sun, R.; Tang, L.; Li, Z.; Lin, L.; Mai, Z.; Chen, G.; Yu, Z. Bioactivable STING Nanoagonists to Synergize NIR-II Mild Photothermal Therapy Primed Robust and Long-Term Anticancer Immunity. Adv. Mater. 2023, 35, e2303149. [Google Scholar] [CrossRef]
- Wang, C.; Guan, Y.; Lv, M.; Zhang, R.; Guo, Z.; Wei, X.; Du, X.; Yang, J.; Li, T.; Wan, Y.; et al. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 2018, 48, 675–687.E7. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Li, Q.; Li, G.; Wang, T.; Lv, X.; Pei, Z.; Gao, X.; Yang, N.; Gong, F.; Yang, Y.; et al. Manganese molybdate nanodots with dual amplification of STING activation for “cycle” treatment of metalloimmunotherapy. Bioact. Mater. 2024, 31, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Jiang, C.; Wang, B.; Wang, Y.; Shangguan, Z.; Wu, Y.; Wang, X.; Huang, Y.; Wang, L.; Chen, P.; et al. Glutathione degradable manganese-doped polydopamine nanoparticles for photothermal therapy and cGAS-STING activated immunotherapy of lung tumor. J. Colloid Interface Sci. 2024, 663, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wang, L.; Shen, T.; Li, P.; Zhu, P.; Xie, S.; Chen, Z.; Zhou, F.; Zhang, J.; Ling, J.; et al. Integrated manganese (III)-doped nanosystem for optimizing photothermal ablation: Amplifying hyperthermia-induced STING pathway and enhancing antitumor immunity. Acta Biomater. 2023, 155, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, J.; Song, X.R.; Chang, M.Q.; Feng, W.; Huang, H.; Jia, C.X.; Ding, L.; Chen, Y.; Wu, R. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway. Biomaterials 2023, 293, 121988. [Google Scholar] [CrossRef] [PubMed]
- Güney Akkurt, M.; Gülsoy, M. Polylactide nanoparticles encapsulating indocyanine green for photothermal therapy of prostate cancer cells. Photodiagnosis Photodyn. Ther. 2022, 37, 102693. [Google Scholar] [CrossRef] [PubMed]
- McGarraugh, H.H.; Liu, W.; Matthews, B.P.; Smith, B.D. Croconaine Rotaxane Dye with 984 nm Absorption: Wavelength-Selective Photothermal Heating. Eur. J. Org. Chem. 2019, 2019, 3489–3494. [Google Scholar] [CrossRef] [PubMed]
- Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 2018, 564, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Li, X.; Hu, Y.; Zhang, X.; Lu, N.; Fang, Q.; Shao, J.; Li, S.; Xiu, W.; Song, Y.; et al. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater. Sci. 2023, 11, 4411–4429. [Google Scholar] [CrossRef]
- Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979. [Google Scholar] [CrossRef]
- Qiu, J.; Shi, Y.; Xia, Y. Polydopamine Nanobottles with Photothermal Capability for Controlled Release and Related Applications. Adv. Mater. 2021, 33, e2104729. [Google Scholar] [CrossRef] [PubMed]
- Cherukula, K.; Park, M.S.; Sontyana, A.G.; Mathew, A.P.; Vijayan, V.; Bae, W.K.; Park, I.K. Role of Immunosuppressive Microenvironment in Acquiring Immunotolerance Post-Photothermal Therapy. J. Korean Med. Sci. 2019, 34, e272. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Li, F.; Li, Y.; Wang, Y.; Guo, X.; Cheng, Z.; Li, N.; Ma, X.; Nie, G.; Zhao, X. Biomimetic Nanoparticles Carrying a Repolarization Agent of Tumor-Associated Macrophages for Remodeling of the Inflammatory Microenvironment Following Photothermal Therapy. ACS Nano 2021, 15, 15166–15179. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Hatogai, K.; Morimoto, H.; Yoda, Y.; Kaneko, K. Photodynamic therapy for esophageal cancer. Ann. Transl. Med. 2014, 2, 29. [Google Scholar] [CrossRef]
- Valli, F.; García Vior, M.C.; Roguin, L.P.; Marino, J. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma. Free Radic. Biol. Med. 2020, 152, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Matoba, Y.; Banno, K.; Kisu, I.; Aoki, D. Clinical application of photodynamic diagnosis and photodynamic therapy for gynecologic malignant diseases: A review. Photodiagnosis Photodyn. Ther. 2018, 24, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Suzuki, S.; Mimura, S.; Ichii, M.; Sakai, H.; Shimao, H.; Kato, H.; Ito, Y.; Hiki, Y.; Hayashi, K.; et al. Photodynamic therapy for superficial esophageal cancer: A phase III study using PHE and excimer dye laser. Gan Kagaku Ryoho. Cancer Chemother. 1993, 20, 2063–2066. [Google Scholar]
- Overholt, B.F.; Lightdale, C.J.; Wang, K.K.; Canto, M.I.; Burdick, S.; Haggitt, R.C.; Bronner, M.P.; Taylor, S.L.; Grace, M.G.; Depot, M. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: International, partially blinded, randomized phase III trial. Gastrointest. Endosc. 2005, 62, 488–498. [Google Scholar] [CrossRef]
- Bilski, P.; Motten, A.G.; Bilska, M.; Chignell, C.F. The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem. Photobiol. 1993, 58, 11–18. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen·−, O·−2) by tetra-brominated hypocrellin B derivative. Free Radic. Res. 2001, 35, 767–777. [Google Scholar] [CrossRef]
- Maeding, N.; Verwanger, T.; Krammer, B. Boosting Tumor-Specific Immunity Using PDT. Cancers 2016, 8, 91. [Google Scholar] [CrossRef]
- Korbelik, M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 1996, 14, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yin, H.; Dong, X.; Li, H.; Li, Y. Photodynamic therapy with light-emitting diode arrays producing different light fields induces apoptosis and necrosis in gastrointestinal cancer. Front. Oncol. 2022, 12, 1062666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, X.; Wang, D.; Lei, M.; Hu, Y.; Chen, Z.; Li, Y.; Luo, Y.; Zhang, L.; Zhu, Y. Synergistic effects of photodynamic therapy and chemotherapy: Activating the intrinsic/extrinsic apoptotic pathway of anoikis for triple-negative breast cancer treatment. Biomater. Adv. 2024, 160, 213859. [Google Scholar] [CrossRef]
- Fingar, V.H. Vascular effects of photodynamic therapy. J. Clin. Laser Med. Surg. 1996, 14, 323–328. [Google Scholar] [CrossRef]
- Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Et Biophys. Acta Rev. Cancer 2019, 1872, 188308. [Google Scholar] [CrossRef] [PubMed]
- Falk-Mahapatra, R.; Gollnick, S.O. Photodynamic Therapy and Immunity: An Update. Photochem. Photobiol. 2020, 96, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, W.; Wang, F.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ikejima, T. DNA damage-triggered activation of cGAS-STING pathway induces apoptosis in human keratinocyte HaCaT cells. Mol. Immunol. 2021, 131, 180–190. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 2018, 215, 1287–1299. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Wu, X.; Ma, D.; Wu, J.; Wang, L.; Jiang, Y.; Fei, Y.; Zhu, C.; Tan, R.; et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 2018, 563, 131–136. [Google Scholar] [CrossRef]
- Glickman, L.H.; Kanne, D.B.; Kasibhatla, S.; Li, J.; Pferdekamper, A.C.; Gauthier, K.S.; Deng, W.; Desbien, A.L.; Katibah, G.E.; Leong, J.J.; et al. Abstract 1445: STING activation in the tumor microenvironment with a synthetic human STING-activating cyclic dinucleotide leads to potent anti-tumor immunity. Cancer Res. 2016, 76, 1445. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Sweis, R.F.; Hodi, F.S.; Messersmith, W.A.; Andtbacka, R.H.I.; Ingham, M.; Lewis, N.; Chen, X.; Pelletier, M.; Chen, X.; et al. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin. Cancer Res. 2022, 28, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Ma, S.; Gu, Z.; Haghparast, A.; Schomann, T.; Yu, Z.; He, Y.; Dong, X.; Cruz, L.J.; Ten Dijke, P. Combination of photodynamic therapy and stimulator of interferon genes (STING) agonist inhibits colorectal tumor growth and recurrence. Cancer Commun. 2023, 43, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.N.; Yu, C.; Vartabedian, V.F.; Jia, Y.; Kumar, M.; Gamo, A.M.; Vernier, W.; Ali, S.H.; Kissai, M.; Lazar, D.C.; et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 2020, 369, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Dutta, D.; Cao, Y.; Ge, Z. Oxidation-Responsive PolyMOF Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS Nano 2023, 17, 9374–9387. [Google Scholar] [CrossRef] [PubMed]
- Battaglia Parodi, M.; La Spina, C.; Berchicci, L.; Petruzzi, G.; Bandello, F. Photosensitizers and Photodynamic Therapy: Verteporfin. Dev. Ophthalmol. 2016, 55, 330–336. [Google Scholar] [CrossRef]
- Chitgupi, U.; Lovell, J.F.; Rajendiran, V. Assessing Photosensitizer Targeting Using Meso-Tetra(Carboxyphenyl) Porphyrin. Molecules 2018, 23, 892. [Google Scholar] [CrossRef]
- Yang, X.; Shi, C.; Tong, R.; Qian, W.; Zhau, H.E.; Wang, R.; Zhu, G.; Cheng, J.; Yang, V.W.; Cheng, T.; et al. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin. Cancer Res. 2010, 16, 2833–2844. [Google Scholar] [CrossRef]
- Rosenthal, I.; Sostaric, J.Z.; Riesz, P. Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 2004, 11, 349–363. [Google Scholar] [CrossRef]
- Jin, Z.H.; Miyoshi, N.; Ishiguro, K.; Umemura, S.; Kawabata, K.; Yumita, N.; Sakata, I.; Takaoka, K.; Udagawa, T.; Nakajima, S.; et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J. Dermatol. 2000, 27, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K. Production of O Radicals from Cavitation Bubbles under Ultrasound. Molecules 2022, 27, 4788. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhou, L.; Zheng, L.; Zhou, Q.; Liu, K.; Mao, Y.; Song, S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021, 497, 229–242. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Liu, M.; Qiu, Y.; Chen, Q.; Zhao, T.; Xiao, Z.; Yang, Y.; Jiang, Y.; Huang, Q.; et al. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. Adv. Sci. 2023, 10, e2204365. [Google Scholar] [CrossRef]
- Wood, A.K.; Ansaloni, S.; Ziemer, L.S.; Lee, W.M.; Feldman, M.D.; Sehgal, C.M. The antivascular action of physiotherapy ultrasound on murine tumors. Ultrasound Med. Biol. 2005, 31, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.K.; Bunte, R.M.; Price, H.E.; Deitz, M.S.; Tsai, J.H.; Lee, W.M.; Sehgal, C.M. The disruption of murine tumor neovasculature by low-intensity ultrasound-comparison between 1- and 3-MHz sonication frequencies. Acad. Radiol. 2008, 15, 1133–1141. [Google Scholar] [CrossRef]
- Guo, J.; Pan, X.; Wang, C.; Liu, H. Molecular Imaging-Guided Sonodynamic Therapy. Bioconjugate Chem. 2022, 33, 993–1010. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Xu, Z.; Luo, Y.; Mitchell, D.; Moss, R.W. Sonodynamic and Photodynamic Therapy in Advanced Breast Carcinoma: A Report of 3 Cases. Integr. Cancer Ther. 2009, 8, 283–287. [Google Scholar] [CrossRef]
- Nicolai, C.J.; Wolf, N.; Chang, I.C.; Kirn, G.; Marcus, A.; Ndubaku, C.O.; McWhirter, S.M.; Raulet, D.H. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 2020, 5, eaaz2738. [Google Scholar] [CrossRef]
- Pantelidou, C.; Sonzogni, O.; De Oliveria Taveira, M.; Mehta, A.K.; Kothari, A.; Wang, D.; Visal, T.; Li, M.K.; Pinto, J.; Castrillon, J.A.; et al. PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov. 2019, 9, 722–737. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, W.; Ma, L.; He, Y.; Liang, H.; Zhang, X.; Li, G.; Feng, X.; Tan, L.; Yang, C. Sonodynamic amplification of cGAS-STING activation by cobalt-based nanoagonist against bone and metastatic tumor. Biomaterials 2023, 302, 122295. [Google Scholar] [CrossRef]
- Pan, B.-S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369, eaba6098. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; He, S.; Zhang, C.; Xu, C.; Huang, J.; Xu, M.; Pu, K. Polymeric STING Pro-agonists for Tumor-Specific Sonodynamic Immunotherapy. Angew. Chem. Int. Ed. 2023, 62, e202307272. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, M.; Lyu, T.; Chen, L.; Wu, M.; Li, R.; Li, H.; Wang, X.; Jiang, X.; Zhen, X. Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma. Adv. Mater. 2023, 35, e2300854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bi, L.; Hu, Z.; Cao, W.; Zhuang, D. Hematoporphyrin monomethyl ether-mediated sonodynamic therapy induces A-253 cell apoptosis. Oncol. Lett. 2020, 19, 3223–3228. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wang, L.; Wang, L.; An, L.; Huo, M.; Xu, H.; Shi, J. Probiotic Engineering and Targeted Sonoimmuno-Therapy Augmented by STING Agonist. Adv. Sci. 2022, 9, e2201711. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Zhen, W.; Wang, Y.; Zhang, S.; Zhao, Y.; Song, S.; Wu, Z.; Zhang, H. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials 2020, 251, 120075. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, J.M.; Kamynina, M.; Sorokin, M.; Zolotovskaia, M.; Koroleva, E.; Kremenchutckaya, K.; Gudkov, A.; Buzdin, A.; Borisov, N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022, 10, 1072. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Tian, H.; Li, B.; Feng, C.; Dai, Y. An Ultrasound-Triggered STING Pathway Nanoagonist for Enhanced Chemotherapy-Induced Immunogenic Cell Death. Small 2024, 20, e2309850. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dong, G.; Ding, M.; Yu, N.; Sheng, C.; Li, J. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy. Small 2024, 20, e2306378. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Li, B.; Wu, C.; Li, Z.; Tang, H.; Song, W.; Qi, G.B.; Tang, Y.; Ping, Y.; Liu, B. Programmable Singlet Oxygen Battery for Automated Photodynamic Therapy Enabled by Pyridone-Pyridine Tautomer Engineering. J. Am. Chem. Soc. 2024, 146, 16458–16468. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.K.; Khurana, D.; Soni, S. Assessment of thermal damage for plasmonic photothermal therapy of subsurface tumors. Phys. Eng. Sci. Med. 2024; online ahead of print. [Google Scholar] [CrossRef]
Clinical Trials ID | Study Start | Drug | Sponsor | Study Status | Study Phase |
---|---|---|---|---|---|
NCT04144140 | 2020-02 | E7766 | Eisai Inc. (Tokyo, Japan) | Terminated | Phase I/Ib |
NCT04609579 | 2020-11 | SNX281 | Stingthera, Inc. (Boston, MA, USA) | Terminated | Phase I |
NCT05070247 | 2022-04 | TAK-500 | Takeda (Tokyo, Japan) | Recruiting | Phase I/II |
NCT05387928 | 2022-06 | KL340399 | Sichuan Kelun Pharmaceutical Research Institute Co., Ltd. (Chengdu, China) | Recruiting | Phase I |
NCT06021626 | 2023-08 | CRD3874-SI | Memorial Sloan Kettering Cancer Center (New York, NY, USA) | Recruiting | Phase I |
Therapy | Clinical Trials ID | Study Start | Report Title | Sponsor | Study Status | Study Phase |
---|---|---|---|---|---|---|
Photothermal Therapy | NCT01679470 | 2012-10 | Efficacy Study of AuroLase Therapy in Subjects with Primary and/or Metastatic Lung Tumors | Nanospectra Biosciences, Inc. (Houston, TX, USA) | Terminated | Not Applicable |
NCT03202446 | 2016-06 | Randomized Clinical Trial Evaluating the Use of the Laser-Assisted Immunotherapy (LIT/inCVAX) in Advanced Breast Cancer | Eske Corporation S.A.C (Lima, Peru) | Terminated | Phase III | |
Photodynamic therapy | NCT05386056 | 2022-12 | Pembrolizumab and Photodynamic Therapy in Previously Treated Metastatic Esophageal Squamous Cell Carcinoma | Peking University (Beijing, China) | Not Yet Recruiting | Phase II |
NCT05551299 | 2023-02 | Treatment of Non-resectable Bile Duct Cancer with Radiofrequency Ablation or Photodynamic Therapy (CARP) | University of Leipzig (Leipzig, Germany) | Recruiting | Phase IV | |
NCT05736406 | 2024-02 | A Dose-escalation Clinical Study of Intraoperative Photodynamic Therapy of Glioblastoma | Hemerion Therapeutics (Villeneuve d’Ascq, France) | Recruiting | Phase I/II | |
NCT05374915 | 2024-02 | Efficacy and Safety Study of REM-001 Photodynamic Therapy for Treatment of Cutaneous Metastatic Breast Cancer (CMBC) | Kintara Therapeutics, Inc. (San Diego, CA, USA) | Recruiting | Phase II | |
NCT06381154 | 2024-06 | Photoradiation with Verteporfin to Facilitate Immunologic Activity of Pembrolizumab in Unresectable, Locally Advance or Metastatic Pancreatic Cancer | Mayo Clinic (Scottsdale, AZ, USA) | Not Yet Recruiting | Phase II | |
NCT06306638 | 2024-07 | Interstitial Photodynamic Therapy Following Palliative Radiotherapy in Treating Patients with Inoperable Malignant Central Airway Obstruction | Roswell Park Cancer Institute (Buffalo, NY, USA) | Not Yet Recruiting | Phase I/II | |
NCT06437288 | 2024-07 | Hematoporphyrin Photodynamic Therapy for Esophageal Cancer | Sun Yat-sen University (Guangzhou, China) | Not Yet Recruiting | Phase II | |
Sonodynamic therapy | NCT04559685 | 2021-03 | Study of Sonodynamic Therapy in Participants with Recurrent High-Grade Glioma | Nader Sanai (Phoenix, AZ, USA) | Recruiting | Early Phase I |
NCT05362409 | 2022-06 | Study to Evaluate 5-ALA Combined with CV01 Delivery of Ultrasound in Recurrent High Grade Glioma | Alpheus Medical, Inc. (Chanhassen, MN, USA) | Active, Not Recruiting | Phase I | |
NCT05123534 | 2022-08 | A Phase 2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients With DIPG | SonALAsense, Inc. (Berkeley, CA, USA) | Recruiting | Phase II | |
NCT04845919 | 2023-02 | Sonodynamic Therapy with ExAblate System in Glioblastoma Patients (Sonic ALA) | Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (Milan, Italy) | Not Yet Recruiting | Phase II | |
NCT06039709 | 2024-01 | Sonodynamic Therapy in Patients with Recurrent GBM (GBM 001) | Shayan Moosa, MD (Charlottesville, VA, USA) | Recruiting | Phase I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, K.; Zhang, H.; Kong, Q.; Ma, Y.; Xiong, T.; Qin, T.; Li, S.; Zhu, X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024, 29, 3704. https://doi.org/10.3390/molecules29153704
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules. 2024; 29(15):3704. https://doi.org/10.3390/molecules29153704
Chicago/Turabian StyleFang, Kelan, Huiling Zhang, Qinghong Kong, Yunli Ma, Tianchan Xiong, Tengyao Qin, Sanhua Li, and Xinting Zhu. 2024. "Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies" Molecules 29, no. 15: 3704. https://doi.org/10.3390/molecules29153704
APA StyleFang, K., Zhang, H., Kong, Q., Ma, Y., Xiong, T., Qin, T., Li, S., & Zhu, X. (2024). Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules, 29(15), 3704. https://doi.org/10.3390/molecules29153704