Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results
2.1.1. SEM, EDS, and Elemental Mapping Analyses
2.1.2. FT-IR Spectra
2.1.3. XPS
2.2. Adsorption Experiments
2.2.1. Adsorption Selectivity
2.2.2. Effect of Contact Time and Adsorption Kinetics
2.2.3. Effect of Solution pH
2.2.4. Adsorption Isotherms
2.2.5. Adsorption Thermodynamics
2.3. Comparison of Ga3+ Adsorption with Previously Reported Adsorbents
2.4. Desorption and Reutilization
2.5. Adsorption Properties of the GO-MTA Composite in a Mixed Solution
3. Experimental Details
3.1. Fabrication of the GO Nanosheets
3.2. Fabrication of the GO-MTA Composite
3.3. Batch Adsorption Experiments
3.4. Sample Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syu, C.H.; Chen, L.Y.; Lee, D.Y. The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Sci. Total Environ. 2021, 759, 143943. [Google Scholar] [CrossRef]
- Long, J.; Zhang, S.; Luo, K. Discovery of anomalous gallium enriched in stone coal: Significance, provenance and recommendations. Geosci. Front. 2023, 14, 101538. [Google Scholar] [CrossRef]
- Qin, S.; Sun, Y.; Li, Y.; Wang, J.; Zhao, C.; Gao, K. Coal deposits as promising alternative sources for gallium. Earth-Sci. Rev. 2015, 150, 95–101. [Google Scholar] [CrossRef]
- Qi, H.; Gong, N.; Zhang, S.Q.; Li, J.; Yuan, G.L.; Liu, X.F. Research progress on the enrichment of gallium in bauxite. Ore Geol. Rev. 2023, 160, 105609. [Google Scholar] [CrossRef]
- Lin, C.F.; Chang, K.S.; Tsay, C.W.; Lee, D.Y.; Lo, S.L.; Yasunaga, T. Adsorption mechanism of gallium(III) and indium(III) onto γ-Al2O3. J. Colloid Interface Sci. 1997, 188, 201–208. [Google Scholar] [CrossRef]
- Suryavanshi, U.S.; Shukla, S.R. Adsorption of Ga(III) on Oxidized Coir. Ind. Eng. Chem. Res. 2009, 48, 870–876. [Google Scholar] [CrossRef]
- Chegrouche, S.; Bensmaili, A. Removal of Ga(III) from aqueous solution by adsorption on activated bentonite using a factorial design. Water Res. 2002, 36, 2898–2904. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Haynes, R.J.; Zhou, Y.F.; Boullemant, A.; Chandrawana, I. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands–Adsorption studies. Water Res. 2015, 71, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Westerhoff, P. Adsorption of III/V ions (In(III), Ga(III) and As(V)) onto SiO2, CeO2 and Al2O3 nanoparticles used in the semiconductor industry. Environ. Sci. Nano 2016, 3, 1014–1026. [Google Scholar] [CrossRef]
- Cui, Y.X.; Duan, M.Y.; Liu, Y.P.; Hu, W.G.; Jiang, X.Y.; Yu, J.G. Fabrication of novel 4-methyl-5-thiazoleethanol covalently-linked graphene oxide composite with adsorption selectivity for Cu2+ from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2024, 156, 105369. [Google Scholar] [CrossRef]
- Ren, H.; Cao, Z.F.; Chen, Y.Y.; Jiang, X.Y.; Yu, J.G. Graphene oxide-Bicine composite as a novel adsorbent for removal of various contaminants from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 106769. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lan, X.W.; Ren, H.; Li, W.-J.; Chen, J.; Jiang, X.Y.; Yu, J.G. Three-dimensional hybrid nitrogen/oxygen-containing components modified graphene oxide as a recyclable adsorbent for rapid adsorption of REEs. J. Environ. Chem. Eng. 2021, 9, 106500. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, C.; Chu, W.; Vipin, A.K.; Sun, L. Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis. Nanomaterials 2019, 9, 439. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, H.; Liu, Y.; Song, S.J. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Liao, C.; Liu, Y.P.; Ren, H.; Jiang, X.Y.; Yu, J.G.; Chen, X.Q. Rational assembly of GO-based heterocyclic sulfur- and nitrogen-containing aerogels and their adsorption properties toward rare earth elementals. J. Hazard. Mater. 2021, 419, 126484. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liang, Q.; Yu, W.; Chen, W.; Lu, G.; Luo, H. Enhanced removal of Cr(VI) from aqueous solutions by polymer-mediated nitrogen-rich reduced graphene oxide. J. Hazard. Mater. 2022, 436, 129184. [Google Scholar] [CrossRef] [PubMed]
- Fabretti, A.C.; Franchini, G.C.; Peyronel, G. Cobalt(II), nickel(II), copper(II) and copper(I) complexes of 2-mercapto-5-methyl-1,3,4-thiadiazole and 2,5-bis(methylmercapto)-1,3,4-thiadiazole. Transit. Met. Chem. 1982, 7, 105–108. [Google Scholar] [CrossRef]
- Bharati, P.; Bharti, A.; Bharty, M.K.; Kashyap, S.; Singh, U.P.; Singh, N.K. Synthesis, spectral and structural characterization of Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with 2-mercapto-5-methyl-1,3,4-thiadiazole: A Zn(II) complex acting as a new sensitive and selective fluorescent probe for the detection of Hg2+ in H2O–MeOH medium. Polyhedron 2013, 63, 222–231. [Google Scholar]
- Qin, Z.; Liao, Y.; Wang, Z.; Wang, S.; Song, L.; Ma, K.; Luo, D.; Yue, H. Innovative amidoxime nanofiber membranes for highly effective adsorption of Ga(III) from waste Bayer solution. Ind. Eng. Chem. Res. 2023, 62, 11140–11150. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liang, C.; Qin, L.; Fu, D.; Wang, M.; Bai, Y.; Liu, W.; Liu, X. Preparation of graphene-based surface ion-imprinted adsorbent for Ga(Ⅲ) selective extraction from acid leaching of fly ash. Sep. Purif. Technol. 2023, 325, 124681. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Y.; Zheng, B. Preparation of 4-Amino-3-hydrazino-1,2,4-triazol-5-thiol-Modified graphene oxide and its greatly enhanced selective adsorption of gallium in aqueous solution. Molecules 2024, 29, 2778. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Li, P.; Lin, J.; Wang, Z.; Cai, G.; Ming, X.; Liu, Y.; Gao, C.; Xu, Z. Intercalated oligomer doubles plasticity for strong and conductive graphene papers and composites. Carbon 2023, 208, 160–169. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, B.B.; Qiu, W.; Li, W.L.; Zheng, X.H.; Xu, B. A review of the preparation and applications of wrinkled graphene oxide. New Carbon Mater. 2022, 37, 290–302. [Google Scholar] [CrossRef]
- Laurita, G.; Seshadri, R. Chemistry, structure, and function of lone pairs in extended solids. Acc. Chem. Res. 2022, 55, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Hipler, F.; Winter, M.; Fischer, R.A. N–H⋯S hydrogen bonding in 2-mercapto-5-methyl-1,3,4-thiadiazole. Synthesis and crystal structures of mercapto functionalised 1,3,4-thiadiazoles. J. Mol. Struct. 2003, 658, 179–191. [Google Scholar] [CrossRef]
- Silva, A.L.R.; Gonçalves, J.M.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C. Thermodynamic properties of 2-mercapto-, 2,5-dimethyl- and 2-mercapto-5-methyl-1,3,4-thiadiazole. J. Chem. Thermodyn. 2022, 165, 106644. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, S.; Zhang, S.; Xie, J.; Zhou, C.-a.; Wang, C.; Song, L.; Ma, K.; Luo, D.; Yue, H. Cross-linked amidoxime porous resin for selective gallium separation in Bayer solutions: Reaction mechanism and kinetic study. Chem. Eng. J. 2024, 481, 148340. [Google Scholar] [CrossRef]
- Vinothkumar, K.; Rajkumar, G.; Sethuraman, M.G. Enhancement of protection of copper through electropolymerised poly-2-amino-1,3,4-thiadiazole and its composite films. Mater. Chem. Phys. 2021, 259, 123987. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhang, H.; Zhang, Q.; Shen, J.; Wei, Y.; Wang, C. Facile construction of a stable core-shell spherically magnetic polyimide covalent organic framework for efficient extraction of phenylurea herbicides. Talanta 2024, 275, 126184. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study. Sep. Purif. Technol. 2020, 232, 115956. [Google Scholar] [CrossRef]
- Lang, P.; Nogues, C. Self-assembled alkanethiol monolayers on a Zn substrate: Interface studied by XPS. Surf. Sci. 2008, 602, 2137–2147. [Google Scholar] [CrossRef]
- Del Valle, M.; Gacitúa, M.; Hernández, F.; Luengo, M.; Hernández, L. Nanostructured conducting polymers and their applications in energy storage devices. Polymers 2023, 15, 1450. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Naqvi, S.R.; Ali, I.; Arshad, M.; AlMohamadi, H.; Sikandar, U. Algal-derived biochar as an efficient adsorbent for removal of Cr(VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. Chemosphere 2023, 316, 137826. [Google Scholar] [CrossRef] [PubMed]
- Khader, E.H.; Khudhur, R.H.; Abbood, N.S.; Albayati, T.M. Decolourisation of anionic azo dye in industrial wastewater using adsorption process: Investigating operating parameters. Environ. Process. 2023, 10, 34. [Google Scholar] [CrossRef]
- Ji, Q.; Hu, C.; Liu, H.; Qu, J. Development of nitrogen-doped carbon for selective metal ion capture. Chem. Eng. J. 2018, 350, 608–615. [Google Scholar] [CrossRef]
- Kubicek, V.; Havlickova, J.; Kotek, J.; Tircsó, G.; Hermann, P.; Tóth, É.; Lukes, I. Gallium (III) complexes of DOTA and DOTA−monoamide: Kinetic and thermodynamic studies. Inorg. Chem. 2010, 49, 10960–10969. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Aljohani, M.; Alkhamis, K.; Shaaban, F.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq. 2023, 384, 122206. [Google Scholar] [CrossRef]
- Li, W.; Zhou, C.; Li, C.; Zhu, W.; Shi, J.; Liu, G. Synthesis of UiO-66 series metal–organic framework composites and the adsorption effect on gallium. Chem. Eng. J. 2023, 455, 140881. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Guo, B.; Dai, Z.; Kong, Z.; Li, F.; Ou, J. Synthesis of polyacrylate-divinylbenzene hydroxamic resins and its gallium adsorption performance in sulfuric acid solution. J. Water Process Eng. 2024, 60, 105191. [Google Scholar] [CrossRef]
- Li, S.; Fan, J.; Gao, L. Conductive biomass carbon aerogel with high adsorption performance for gallium in alkaline solution. Miner. Eng. 2023, 204, 108396. [Google Scholar] [CrossRef]
- Li, W.; Zhou, C.; Li, C.; Zhu, W.; Shi, J.; Liu, G. Synthesis of CNT/UiO-66-NH2 adsorbent and the selective adsorption of gallium in solution. Sep. Purif. Technol. 2023, 323, 124464. [Google Scholar] [CrossRef]
- Raj, P.; Patel, M.; Karamalidis, A.K. Chemically modified polymeric resins with catechol derivatives for adsorption, separation and recovery of gallium from acidic solutions. J. Environ. Chem. Eng. 2023, 11, 110790. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Zhang, Z.; Huang, M.; Wang, Y.; Gao, J.; Xiong, Y. A green synthesis method of a mussel-inspired polyphenol-functionalized silica-based material and its highly efficient adsorption of gallium. Sep. Purif. Technol. 2024, 349, 127670. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Tour, J.M. Mechanism of graphene oxide formation. ACS Nano 2014, 8, 3060–3068. [Google Scholar] [CrossRef]
Adsorption Kinetic Model | R2 | k1 (min−1) | k2 (min−1) | qe (mg g−1) |
---|---|---|---|---|
Linear pseudo-first-order | 0.971 | 0.013 | - | 9.622 |
Nonlinear pseudo-first-order | 0.621 | 0.139 | - | 43.470 |
Linear pseudo-second-order | 0.962 | - | 0.0015 | 55.066 |
Nonlinear pseudo-second-order | 0.769 | - | 0.0036 | 48.156 |
T (K) | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
R2 | kL | qm (mg g−1) | R2 | kF | n | ||
Linear | 288 | 0.972 | 0.134 | 37.037 | 0.956 | 5.717 | 2.646 |
293 | 0.993 | 0.583 | 47.619 | 0.922 | 8.579 | 5.039 | |
298 | 0.997 | 0.703 | 47.847 | 0.931 | 8.468 | 4.965 | |
303 | 0.990 | 0.576 | 52.631 | 0.942 | 8.771 | 5.062 | |
308 | 0.978 | 0.474 | 55.556 | 0.931 | 8.824 | 4.727 | |
Nonlinear | 288 | 0.916 | 0.137 | 36.567 | 0.931 | 8.731 | 2.803 |
293 | 0.521 | 0.377 | 46.560 | 0.913 | 24.877 | 5.706 | |
298 | 0.406 | 0.343 | 46.893 | 0.924 | 25.730 | 5.734 | |
303 | 0.725 | 0.553 | 50.160 | 0.934 | 26.510 | 5.656 | |
308 | 0.715 | 0.507 | 55.260 | 0.914 | 26.924 | 5.188 |
Adsorbent | qe (mg g−1) | C0 (mg L−1) | T (°C) | Reference |
---|---|---|---|---|
γ-Al2O3 | Not provided | 210 | 25 | [5] |
PAN NFs | 39.80 | 200 | 30 | [21] |
GO-AHTZT | 34.72 | 50 | 35 | [23] |
A-PSD resin | 14.67 | 200 | 25 | [29] |
GO/UiO-66-NH2 | 661.67 | 400 | 40 | [41] |
RCONHOH | 27.65 | 500 | 60 | [42] |
NHPA | 120.48 | 300 | RT | [43] |
CNT/UiO-66-NH2 | 925.44 | 400 | 40 | [44] |
Catechol-modified resin | 28.71 | 60 | RT | [45] |
KIT-6@CA-PEI | 88.65 | 20 | 40 | [46] |
GO-MTA | 55.6 | 50 | 35 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Guo, Y.; Zheng, B. Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions. Molecules 2024, 29, 3768. https://doi.org/10.3390/molecules29163768
Zhu X, Guo Y, Zheng B. Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions. Molecules. 2024; 29(16):3768. https://doi.org/10.3390/molecules29163768
Chicago/Turabian StyleZhu, Xi, Yong Guo, and Baozhan Zheng. 2024. "Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions" Molecules 29, no. 16: 3768. https://doi.org/10.3390/molecules29163768
APA StyleZhu, X., Guo, Y., & Zheng, B. (2024). Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions. Molecules, 29(16), 3768. https://doi.org/10.3390/molecules29163768