Construction of Ag3PO4/g-C3N4 Z-Scheme Heterojunction Composites with Visible Light Response for Enhanced Photocatalytic Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Microscopic Morphology of the Samples
2.2. XPS Analysis
2.3. Analysis of the Energy Band Structure
2.4. Optoelectronic Characteristics
2.5. Evaluation of Photocatalytic Activity and Stability
2.6. Photocatalytic Enhancement Mechanism
3. Experimental Section
3.1. Reagents
3.2. Preparation of Samples
3.3. Characterization of the Samples
3.4. Evaluation of Photocatalytic Performance and Stability
3.5. Cavity and Radical Trapping Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Razan, A.; Alshgari, N.; Zeid, A.; Amerah, M.; Sonaimuthu, M.; Asma, A.; Alothman, M.; Mohammad, R. Titanium carbide (Ti3C2Tx) decorated molybdenum diselenide (MoSe2) nanoflower composite enhanced photo-electrocatalytic activity in hydrogen evolution. Ceram. Int. 2024, 50, 10928–10939. [Google Scholar]
- Ren, G.; Zhao, Z.; Li, Z.; Zhang, Z.; Meng, X. Rapid Joule-Heating fabrication of oxygen vacancies and anchor of Ru clusters onto BiVO4 for greatly enhanced photocatalytic N2 fixation. J. Catal. 2023, 428, 115147. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, J.; Shang, W.; Guo, J.; Cheng, X.; Song, S.; Liu, T.; Liu, W.; Shi, Y. Light-driven H2O2 production over redox-active imine-linked covalent organic frameworks. Adv. Powder. Mater. 2024, 3, 100179. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, P.; Zhang, Y. Enhanced photocatalytic properties of s-triazine-based-g-C3N4/BlueP and g-C3N4/G/BlueP vdW heterostructures: A DFT study. Chem. Phys. Lett. 2024, 841, 141163. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Z.; Han, K.; Liu, Y.; Song, Y. Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl. Mater. Interfaces 2014, 151, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W.; Si, M.; Zhang, H. Carbon Cloth-supported MoS2/Ag2S/Ag3PO4 Composite with High Photocatalytic Activity and Recyclability. ChemCatChem 2019, 11, 1017–1025. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Cheng, T.; Zhang, X.; Zhou, Z.; Zhang, X.; Xu, Q. Ag3PO4/AgSbO3 composite as novel photocatalyst with significantly enhanced activity through a Z-scheme degradation mechanism. J. Iran. Chem. Soc. 2022, 19, 821–838. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Feng, X. Efficient Adsorption and Photocatalytic Degradation of Organic Pollutant by Ag3PO4/ZnO/Chitosan–Biochar Composites. Russ. J. Inorg. Chem. 2023, 68, 1386–1398. [Google Scholar]
- Wang, Y.; Yu, H.; Lu, Y.; Qu, J.; Zhu, S.; Huo, M. A nano-composite comprised of Ti3+-doped TiO2 nanotubes and Ag3PO4 quantum dots with enhanced photocatalytic activity under visible light. Mater. Lett. 2019, 240, 35–38. [Google Scholar] [CrossRef]
- Zia, H.; Altaf, H.; Arshid, B.; Irfan, N.; Radha, T. Enhanced charge transfer and photocatalytic performance of cube-shaped Ag3PO4@Zeolite-A nanocomposite. Mater. Chem. Phys. 2023, 302, 127701. [Google Scholar]
- Balchander, V.; Ayodhya, D.; Sunder, S.R. Sonochemical fabrication of efficient binary Cu/Bi2S3 heterojunction composites towards visible-light active photocatalytic degradation of CV, FL, and SO dyes for wastewater treatment. Inorg. Chem. Commun. 2024, 162, 112181. [Google Scholar] [CrossRef]
- Yousefi, S.; Attar, S.A. Coupling effect of Fe-doped Co3O4 nanoparticles with SrTiO3 nanotubes on the high-efficiency photocatalytic activities of basic violet 16 dye degradation and H2 evolution. Inorg. Chem. Commun. 2024, 162, 112273. [Google Scholar] [CrossRef]
- Rostami, M.; Badiei, A. Molten salt-shielded preparation of the ultrathin nanosheets of Ti3C2Cl2@TiO2 coupled with Fe3O4@C-C3N4 for assessing photocatalytic activity. Ceram. Int. 2024, 50, 13608–13620. [Google Scholar] [CrossRef]
- SeongHwang, K.; SooJin, P. Interfacial interaction of graphitic carbon nitride/nanodiamond nanocomposites toward synergistic enhancement of photocatalytic degradation of organic contaminants. J. Colloid. Interf. Sci. 2021, 608, 2257–2265. [Google Scholar]
- Chen, P.; Di, S.; Qiu, X.; Zhu, S. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl. Surf. Sci. 2022, 587, 152889. [Google Scholar] [CrossRef]
- Suma, D.; Avijit, C. Recent advancements of g-C3N4-based magnetic photocatalysts towards the degradation of organic pollutants: A review. Nanotechnology 2022, 33, 072004. [Google Scholar]
- Feng, S.; Li, F. Photocatalytic dyes degradation on suspended and cement paste immobilized TiO2/g-C3N4 under simulated solar light. J. Environ. Chem. Eng. 2021, 9, 105488. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, G.; Yu, F.; Huang, Y. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B-Environ. Energy 2019, 256, 117825. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Z.; Zhang, Q.; He, X.; Feng, Q.; Wang, D.; Ma, D. Biomass porous carbon as the active site to enhance photodegradation of oxytetracycline on mesoporous g-C3N4. RSC Adv. 2022, 12, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Chang, Q.; Wang, W.B.; Yang, S.B. Advances in exfoliation preparation methods for g-C3N4 nanosheets. J. Silic. 2023, 51, 1868–1882. [Google Scholar]
- Zhang, X.; Cui, N.; Zhou, L.; Cai, M.; Zou, G.; Chen, G. Preparation of b-N-TiO2/Ag3PO4 composite photocatalytic materials and photocatalytic degradation of harmful algae. Res. Environ. Sci. 2021, 34, 2645–2654. [Google Scholar]
- Bezu, Z.; Taddesse, A.M.; Diaz, I. Natural zeolite supported g-C3N4/ZnO/Ag3PO4 composite: A tandem n-n heterojunction for simultaneous photodegradation of dyes under visible and solar irradiation. J. Photochem. Photobiol. A 2024, 449, 115369. [Google Scholar] [CrossRef]
- Huang, G.; Zeng, D.; Ke, P.; Chen, Y. Preparation and characterization of Ag3PO4@g-C3N4 photocatalysts for dye wastewater treatment under visible-light irradiation. Inorg. Chem. Commun. 2024, 160, 111889. [Google Scholar] [CrossRef]
- Shen, X.; Fu, W.; Li, J.; Li, X. Degradation performance study and application of LED light-driven g-C3N4/ZnO composites. J. Solid State Chem. 2024, 331, 124533. [Google Scholar] [CrossRef]
- Amritha, V.K.; Sushmee, B. Efficient sunlight-assisted degradation of organic dyes using V2O3/g-C3N4 nanocomposite catalyst. Opt. Mater. 2024, 147, 114633. [Google Scholar]
- Zhao, D.; Cai, C. Adsorption and photocatalytic degradation of pollutants on Ce-doped MIL-101-NH2/Ag3PO4 composites. Catal. Commun. 2020, 136, 105910. [Google Scholar] [CrossRef]
- Xu, Z.; Zhong, J.; Li, M. Ionic liquid-assisted construction of Z-scheme Ag/Ag3PO4/Ag2MoO4 heterojunctions with enhanced photocatalytic performance. Inorg. Chem. Commun. 2023, 152, 110734. [Google Scholar] [CrossRef]
- Modwi, A.; Albadri, A.; Taha Kamal, K. High Malachite Green dye removal by ZrO2-g-C3N4 (ZOCN) meso-sorbent: Characteristics and adsorption mechanism. Diam. Relat. Mater. 2023, 132, 109698. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Kang, B.; Li, Z.; Niu, Y. Preparation and Characterization of Tubelike g-C3N4/Ag3PO4 Heterojunction with Enhanced Visible-Light Photocatalytic Activity. Crystals 2021, 11, 1373. [Google Scholar] [CrossRef]
- Ren, Y.; Zhan, W.; Tang, L.; Zheng, H.; Liu, H.; Tang, K. Constructing a ternary H2SrTa2O7/g-C3N4/Ag3PO4 heterojunction based on cascade electron transfer with enhanced visible light photocatalytic activity. Crystengcomm 2020, 22, 6485–6494. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Liu, Z.; Liu, T. Construction of self-activating Z-scheme g-C3N4/AgCl heterojunctions for enhanced photocatalytic property. J. Phys. Chem. Solids 2023, 172, 111055. [Google Scholar] [CrossRef]
- Hemkumar, K.; Ananthi, P.; Pius, A. Enhanced photocatalytic activity of MIL-88 a impregnated with Ag3PO4/GCN for the degradation of diclofenac sodium. Mater. Sci. Eng. B 2023, 292, 116453. [Google Scholar] [CrossRef]
- Ya, Z.; Wang, Q.; Cai, J.; Wang, P.; Jiang, X.; Cai, Z.; Xiang, S.; Wang, T.; Cai, D. An ultra-porous g-C3N4 micro-tube coupled with MXene(Ti3C2TX) nanosheets for efficient degradation of organics under natural sunlight. J. Environ. Sci. 2024, 137, 258–270. [Google Scholar] [CrossRef]
- Chang, J.; Yu, C.; Song, X.; Ding, Y.; Hou, S.; Li, S.; Zhao, Z.; Qiu, J. Atomic-scale carbon framework reconstruction enables nitrogen-doping up to 33.8 at% in graphene nanoribbon. Nano Energy 2023, 116, 108744. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, X.; Wang, Z. Preparation of WO3/Ag3PO4 complex and its photocatalytic performance. J. Xihua Norm. Univ. 2022, 43, 301–307. [Google Scholar]
- Xu, Q.Y.; Gao, P.; Liu, Z.T. First-principles calculations on the electronic structure and photocatalytic properties of doped monolayer MoS2. J. At. Mol. Phys. 2025, 42, 41–46. [Google Scholar]
- Liu, Y.; Cui, E.; Dong, P.; Deng, Y.; Zhang, F.; Xu, N.; Zhang, Q.; Hou, G. Study on the firing of SnO2 under N2 atmosphere and its photocatalytic properties. New Mater. Chem. Industry 2016, 44, 180–182. [Google Scholar]
- Chen, Y.S.; Zheng, J.F.; Zhu, S.L.; Xiong, M.Y.; Nie, L.H. One-step hydrothermal preparation and properties of BiOBr/BiPO4 p-n heterojunction photocatalysts. J. Inorg. Chem. 2021, 37, 1828–1838. [Google Scholar]
- Ge, B.; Zhang, Y.; Zhang, T.; Ren, G.; Li, W.; Zhao, H. Construction of superhydrophobic directly Z-scheme bismuth oxybromide/silver phosphate fabric surface with UV shielding and enhanced visible light absorption activity. Sci. China (Technol. Sci.) 2021, 64, 785–792. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, H. Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J. Mater. Sci. 2018, 29, 9291–9300. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, H.; Cui, Z.; Zhang, H.; Wang, X. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 2017, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- Sui, M.; Zhang, S.; Gu, X.; Shi, M.; Wang, Y.; Liu, L. Preparation Ag3PO4/AgVO3/Ag4V2O7 composites for enhancing visible light photocatalytic activity of Ag3PO4. J. Mater. Sci.-Mater. Electron. 2018, 29, 13368–13375. [Google Scholar] [CrossRef]
- Li, X.; Wu, K.; Dong, C.; Xia, S.; Ye, Y.; Wei, X. Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation. Mater. Lett. 2014, 130, 97–100. [Google Scholar] [CrossRef]
- George, P.P.; Apsana, G. One-Step Effective Sonochemical Technique for Insitu Coating of Ag3PO4 Nanoparticles on Glass and Polymer Substrates. Int. J. Nanosci. 2022, 21, 500326. [Google Scholar] [CrossRef]
- Mojdeh, F.; Reza, P.; Amin, Y. Highly efficient photocatalytic removal of concentrated PEX, PAX and SIPX xanthates collectors by an immobilized nanostructured g-C3N4/ZnO low power backlighted module. Miner. Eng. 2023, 204, 108416. [Google Scholar]
- Lu, T.; Xiao, X.; Wang, F.; Cheng, X.; Zhang, Y. The flower-like Ni-MOF modified BiOBr nanosheets with enhancing photocatalytic degradation performance. J. Photochem. Photobiol. A 2024, 452, 115548. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Lin, Q.; Lu, Q.; Lv, W.; Wang, C.; Yu, L.; Li, Y.; Li, Y. A novel Cr2O3/Cr-doped g-C3N4 photocatalyst with a narrowed band gap for efficient photodegradation of tetracycline. Catal. Today 2024, 431, 114613. [Google Scholar] [CrossRef]
- Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S. Perovskite BiFeO3 thin film photocathode performance with visible light activity. Nanotechnology 2016, 27, 345402. [Google Scholar] [CrossRef]
- Prakash, P.P.; Prashanth, J.; Velikokhatnyi, O.I.; Kumta, P.N. High Performance and Durable (Zn1−xCox)O:N Nanowires as Photoanode for Efficient Hydrogen Production Via Photoelectrochemical Water Splitting. Meet. Abstr. 2015, MA2015-01, 2000. [Google Scholar]
- Chaiyuth, S.K.; Wright, B.F.; Clarke, T.M.; Wallace, G.G.; Mozer, A.J. Effects of Interfacial Layers on the Open Circuit Voltage of Polymer/Fullerene Bulk Heterojunction Devices Studied by Charge Extraction Techniques. ACS Appl. Mater. Interfaces 2019, 11, 21030–21041. [Google Scholar]
- Zhao, T.; Chen, J.; Wang, X.; Yao, M. Ab-initio insights into electronic structures, optical and photocatalytic properties of Janus WXY (X/Y = O, S, Se and Te). Appl. Surf. Sci. 2021, 545, 148968. [Google Scholar] [CrossRef]
- Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Chai, C. Enhanced debromination and degradation of 2,4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem. Eng. J. 2017, 316, 461–470. [Google Scholar] [CrossRef]
- Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Theoretical computational study of Pt-C3N4/BiOCl S-type heterojunction for photocatalytic CO2 reduction. J. Phys. Chem. 2023, 39, 141–150. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Meng, Y.; Liu, Q.; Xu, M. Construction of Ag3PO4/g-C3N4 Z-Scheme Heterojunction Composites with Visible Light Response for Enhanced Photocatalytic Degradation. Molecules 2024, 29, 3774. https://doi.org/10.3390/molecules29163774
Pan X, Meng Y, Liu Q, Xu M. Construction of Ag3PO4/g-C3N4 Z-Scheme Heterojunction Composites with Visible Light Response for Enhanced Photocatalytic Degradation. Molecules. 2024; 29(16):3774. https://doi.org/10.3390/molecules29163774
Chicago/Turabian StylePan, Xiangping, Ying Meng, Qingwang Liu, and Mai Xu. 2024. "Construction of Ag3PO4/g-C3N4 Z-Scheme Heterojunction Composites with Visible Light Response for Enhanced Photocatalytic Degradation" Molecules 29, no. 16: 3774. https://doi.org/10.3390/molecules29163774
APA StylePan, X., Meng, Y., Liu, Q., & Xu, M. (2024). Construction of Ag3PO4/g-C3N4 Z-Scheme Heterojunction Composites with Visible Light Response for Enhanced Photocatalytic Degradation. Molecules, 29(16), 3774. https://doi.org/10.3390/molecules29163774