Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, J.; Huang, X.; Shao, Q. Emerging two dimensional metastable-phase oxides: Insights and prospects in synthesis and catalysis. Angew. Chem. Int. Ed. 2024, 63, e202318028. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, J.; Lee, G.; Lee, J.; Song, H.; Jho, J.Y.; Lee, H.H.; Kim, Y.H. Synthesis of a Carbonaceous Two-Dimensional Material. ACS Appl. Mater. Interfaces 2019, 11, 21308–21313. [Google Scholar] [CrossRef] [PubMed]
- Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chhowalla, M.; Liu, Z.F. 2D nanomaterials: Graphene and transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 3015–3017. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, K.; Zhou, K.-G. Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Prog. Cryst. Growth Charact. Mater. 2017, 63, 72–93. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, J.X.; Wang, L.L.; Yu, X.H.; Sun, J.F.; Tang, H. Unraveling the Roles of Hot Electrons and Cocatalyst toward Broad Spectrum Photocatalytic H2 Generation of g-C3N4 Nanotube. Sol. RRL 2021, 5, 2000504. [Google Scholar] [CrossRef]
- Sun, L.J.; Su, H.W.; Liu, Q.Q.; Hu, J.; Wang, L.L.; Tang, H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022, 41, 2387–2404. [Google Scholar] [CrossRef]
- Tang, L.Y.; Hu, Y.J.; Tang, H.; Sun, L.J.; Jiang, H.P.; Wang, W.K.; Su, H.W.; Hu, J.; Wang, L.L.; Liu, Q.Q. Incorporating Ni-Polyoxometalate into the S-Scheme Heterojunction to Accelerate Charge Separation and Resist Photocorrosion for Promoting Photocatalytic Activity and Stability. J. Phys. Chem. Lett. 2022, 13, 11778–11786. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wang, R.; Zhao, C.; Chen, Z.; Yang, X.; Bukhvalov, D.; Lin, Z.; Liu, Q. Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chem. Eng. J. 2019, 374, 1064–1075. [Google Scholar] [CrossRef]
- Zhan, D.; Yan, J.X.; Ni, Z.H.; Sun, L.; Lai, L.F.; Liu, L.; Liu, X.Y.; Shen, Z.X. Bandgap-Opened Bilayer Graphene Approached by Asymmetrical Intercalation of Trilayer Graphene. Small 2014, 11, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Yoon, Y.S.; Kim, D.-J. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens. 2018, 3, 2045–2060. [Google Scholar] [CrossRef] [PubMed]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, L.; Zhao, S.; Zhou, Y.; Peng, H.; Liu, Z. Controllable Co-segregation Synthesis of Wafer-Scale Hexagonal Boron Nitride Thin Films. Adv. Mater. 2013, 26, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ren, K.; Zhang, G.; Wan, J.; Zhang, H.; Zhang, G.; Qin, H. Tunable Thermal Conductivity of Two-Dimensional SiC Nanosheets by Grain Boundaries: Implications for the Thermo-Mechanical Sensor. ACS Appl. Nano Mater. 2024, 7, 15078–15085. [Google Scholar] [CrossRef]
- Li, J.; Lv, P.; Cao, Y.; Ye, J.; Li, F.; Ma, C.; Shi, L.; Tan, N. Photothermal evaporation of the ferromagnetic nanofluid droplets under a magnetic field. Case Stud. Therm. Eng. 2024, 56, 104300. [Google Scholar] [CrossRef]
- Chen, X.; McDonald, A.R. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv. Mater. 2016, 28, 5738–5746. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.L.; Chou, J.P.; Ren, Q.Q.; Zhao, Y.M.; Yu, J.; Tang, W.C. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett. 2017, 110, 173105. [Google Scholar] [CrossRef]
- Ren, K.; Sun, M.L.; Luo, Y.; Wan, S.K.; Yu, J.; Tang, W.C. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl. Surf. Sci. 2019, 476, 70–75. [Google Scholar] [CrossRef]
- Ren, K.; Shu, H.B.; Wang, K.; Qin, H.S. Two-dimensional MX2Y4 systems: Ultrahigh carrier transport and excellent hydrogen evolution reaction performances. Phys. Chem. Chem. Phys. 2023, 25, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Huang, J.W.; Windgaetter, L.; Ong, C.S.; Zhao, X.X.; Zhang, C.R.; Tang, M.; Li, Z.Y.; Qiu, C.Y.; Latini, S.; et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater. 2022, 21, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, P.X.; Li, Y.Q.; Li, R.; Zhang, K.M.; Tian, H.; Yu, K.C.; Bian, B.Y.; Hao, L.Z.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, S.; Shi, Y.; Lu, J.; Sangiovanni, D.G.; Greczynski, G.; Magnuson, M.; Andersson, M.; Rosen, J.; Hultman, L. Synthesis of goldene comprising single-atom layer gold. Nat. Synth. 2024, 3, 744–751. [Google Scholar] [CrossRef]
- Qin, H.S.; Pei, Q.X.; Liu, Y.L.; Zhang, Y.W. The mechanical and thermal properties of MoS2-WSe2 lateral heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 15845–15853. [Google Scholar] [CrossRef] [PubMed]
- Momeni, F.; Mehrafrooz, B.; Montazeri, A.; Rajabpour, A. MD-based design of bilayer graphene-hBN heterostructures: An insight into enhanced thermal transport. Int. J. Heat Mass Transf. 2020, 150, 119282. [Google Scholar] [CrossRef]
- Li, R.; Cheng, Y.; Huang, W. Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small 2018, 14, 1802091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Gong, T.; Pan, R.; Wang, H.; Guo, Z.; Zhang, H.; Fu, X. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J. Mater. Chem. A 2020, 8, 8813–8830. [Google Scholar] [CrossRef]
- Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 2020, 7, 011311. [Google Scholar] [CrossRef]
- Ren, K.; Qin, H.S.; Liu, H.C.; Chen, Y.; Liu, X.J.; Zhang, G. Manipulating Interfacial Thermal Conduction of 2D Janus Heterostructure via a Thermo-Mechanical Coupling. Adv. Funct. Mater. 2022, 32, 2110846. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, G.; Zhang, L.; Qin, H.; Zhang, G. Ultraflexible two-dimensional Janus heterostructure superlattice: A novel intrinsic wrinkled structure. Nanoscale 2023, 15, 8654–8661. [Google Scholar] [CrossRef] [PubMed]
- Dávila, M.E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002. [Google Scholar] [CrossRef]
- Gaddemane, G.; Vandenberghe, W.G.; Van de Put, M.L.; Chen, E.; Fischettit, M.V. Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensionalmaterials: Silicene and germanene. J. Appl. Phys. 2018, 124, 044306. [Google Scholar] [CrossRef]
- Ni, Z.Y.; Liu, Q.H.; Tang, K.C.; Zheng, J.X.; Zhou, J.; Qin, R.; Gao, Z.X.; Yu, D.P.; Lu, J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Stille, L.; Tabert, C.J.; Nicol, E.J. Optical signatures of the tunable band gap and valley-spin coupling in silicene. Phys. Rev. B 2012, 86, 195405. [Google Scholar] [CrossRef]
- Yan, J.A.; Stein, R.; Schaefer, D.M.; Wang, X.Q.; Chou, M.Y. Electron-phonon coupling in two-dimensional silicene and germanene. Phys. Rev. B 2013, 88, 121403. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef]
- Ueno, N.; Sakuraba, M.; Osakabe, Y.; Akima, H.; Sato, S. Electronic properties of Si/Si-Ge Alloy/Si(100) heterostructures formed by ECR Ar plasma CVD without substrate heating. Mater. Sci. Semicond. Process. 2017, 70, 55–62. [Google Scholar] [CrossRef]
- Izhnin, I.I.; Kurbanov, K.R.; Lozovoy, K.A.; Kokhanenko, A.P.; Dirko, V.V.; Voitsekhovskii, A.V. Epitaxial fabrication of 2D materials of group IV elements. Appl. Nanosci. 2020, 10, 4375–4383. [Google Scholar] [CrossRef]
- Isella, G.; Chrastina, D.; Rössner, B.; Hackbarth, T.; Herzog, H.; König, U.; von Känel, H. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electron. 2004, 48, 1317–1323. [Google Scholar] [CrossRef]
- Xu, H.; Meng, L.; Li, Y.; Yang, T.Z.; Bao, L.H.; Liu, G.D.; Zhao, L.; Liu, T.S.; Xing, J.; Gao, H.J.; et al. Applications of new exfoliation technique in study of two-dimensional materials. Acta Phys. Sin. 2018, 67, 218201. [Google Scholar]
- Du, B.J.; Zhao, Z.Y.; Xin, Y.; Ren, Z.H.; Xing, F.; Zhang, F. Effect of different exfoliation solvents on the saturable absorption properties of germanene and silicene nanosheets prepared by the liquid-phase exfoliation. Opt. Mater. 2023, 136, 113411. [Google Scholar] [CrossRef]
- Dhungana, K.B.; Jaishi, M.; Pati, R. Unlocking the Origin of Superior Performance of a Si–Ge Core–Shell Nanowire Quantum Dot Field Effect Transistor. Nano Lett. 2016, 16, 3995–4000. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, H.; Götz-Köhler, M.; Flathmann, C.; Seibt, M.; Gehrke, K.; Vehse, M. Novel semi-transparent solar cell based on ultrathin multiple Si/Ge quantum wells. Prog. Photovolt. Res. Appl. 2022, 31, 1396–1408. [Google Scholar] [CrossRef]
- Adabifiroozjaei, E.; Mofarah, S.S.; Ma, H.; Jiang, Y.; Assadi, M.H.N.; Suzuki, T.S. Molecular dynamics simulation of vacancy cluster formation in β- and α-Si3N4. Comput. Mater. Sci. 2020, 178, 109632. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B 2014, 89, 054310. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Huang, L.; Ren, K.; Zhang, H.P.; Qin, H.S. Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence. Chin. Phys. B 2023, 32, 076103. [Google Scholar] [CrossRef]
- Pun, G.P.P.; Mishin, Y. Optimized interatomic potential for silicon and its application to thermal stability of silicene. Phys. Rev. B 2017, 95, 224103. [Google Scholar] [CrossRef]
- Mahdizadeh, S.J.; Akhlamadi, G. Optimized Tersoff empirical potential for germanene. J. Mol. Graph. Model. 2017, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M. A new look at the atomic level virial stress: On continuum-molecular system equivalence. Proc. R. Soc. A Math. Phys. Eng. Sci. 2003, 459, 2347–2392. [Google Scholar] [CrossRef]
- Chung, J.Y.; Sorkin, V.; Pei, Q.X.; Chiu, C.H.; Zhang, Y.W. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures. J. Phys. D Appl. Phys. 2017, 50, 345302. [Google Scholar] [CrossRef]
- Chen, J.Y.; Fang, T.H.; Lin, M.H.; Hsu, K.C. Effects of temperature and thickness on the fracture and mechanical properties of Si/Ge multilayers using molecular dynamics. Phys. E-Low-Dimens. Syst. Nanostruct. 2020, 123, 114198. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Zhang, Y.-W. Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance. Nano Lett. 2016, 16, 4954–4959. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Y.; Wu, Y.; Li, M.; Liu, Y.; Pei, Q.-X. Defect-Engineered Thermal Transport in Wrinkled Graphene: A Comprehensive Molecular Dynamics Study. J. Phys. Chem. C 2022, 126, 5759–5766. [Google Scholar] [CrossRef]
- Schelling, P.K.; Phillpot, S.R.; Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 2002, 65, 144306. [Google Scholar] [CrossRef]
- Ding, Z.W.; Jiang, J.W.; Pei, Q.X.; Zhang, Y.W. In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology 2015, 26, 065703. [Google Scholar] [CrossRef] [PubMed]
- Lü, X.; Chu, J. Lattice thermal conductivity in a Si∕Ge∕Si heterostructure. J. Appl. Phys. 2007, 101, 114323. [Google Scholar] [CrossRef]
- Hinsche, N.F.; Mertig, I.; Zahn, P. Thermoelectric transport in strained Si and Si/Ge heterostructures. J. Phys. Condens. Matter. 2012, 24, 275501. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Poulikakos, D. Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity. Nano Lett. 2012, 12, 5487–5494. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Huang, L.; Wang, K.; Mu, W.; Wu, Q.; Ma, Z.; Ren, K. Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules 2024, 29, 3823. https://doi.org/10.3390/molecules29163823
Zhao L, Huang L, Wang K, Mu W, Wu Q, Ma Z, Ren K. Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules. 2024; 29(16):3823. https://doi.org/10.3390/molecules29163823
Chicago/Turabian StyleZhao, Liuhuan, Lei Huang, Ke Wang, Weihua Mu, Qiong Wu, Zhen Ma, and Kai Ren. 2024. "Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures" Molecules 29, no. 16: 3823. https://doi.org/10.3390/molecules29163823
APA StyleZhao, L., Huang, L., Wang, K., Mu, W., Wu, Q., Ma, Z., & Ren, K. (2024). Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules, 29(16), 3823. https://doi.org/10.3390/molecules29163823