Standardization via Post Column Infusion—A Novel and Convenient Quantification Approach for LC-MS/MS
Abstract
:1. Introduction
2. Results
2.1. Proof of Concept—Quantification via PCI
2.2. Performance Criteria
2.3. Method Comparison
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Calibrators, Quality Controls, Internal Standards, Precipitation Reagent, and Post Column Infusion Solution
4.3. Patient Samples
4.4. Sample Preparation
4.5. LC and MS Parameters
4.6. Proof of Concept—Quantification via PCI
4.7. Performance Criteria
4.8. Method Comparison
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, C.S.; Lam, C.W.K.; Chan, M.H.M.; Cheung, R.C.K.; Law, L.K.; Lit, L.C.W.; Ng, K.F.; Suen, M.W.M.; Tai, H.L. Electrospray ionisation mass spectrometry: Principles and clinical applications. Clin. Biochem. Rev. 2003, 24, 3–12. [Google Scholar]
- Ono, H.; Chuda, Y.; Ohnishi-Kameyama, M.; Yada, H.; Ishizaka, M.; Kobayashi, H.; Yoshida, M. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Addit. Contam. 2003, 20, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Plassmann, M.M.; Schmidt, M.; Brack, W.; Krauss, M. Detecting a wide range of environmental contaminants in human blood samples--combining QuEChERS with LC-MS and GC-MS methods. Anal. Bioanal. Chem. 2015, 407, 7047–7054. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.J. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clin. Biochem. Rev. 2009, 30, 19–34. [Google Scholar] [PubMed]
- Rychlik, M.; Asam, S. Stabilisotopenverdünnungsanalysen zur Quantifizierung organischer Spurenkomponenten in der Lebensmittelanalytik. Environ. Sci. Eur. 2009, 21, 470–482. [Google Scholar] [CrossRef]
- Gove, H.E. Measuring Mass: From Positive Rays to Proteins by Michael A. Grayson. Isis 2003, 94, 334–426. [Google Scholar]
- Griffiths, J. A Brief History of Mass Spectrometry. Anal. Chem. 2008, 80, 5678–5683. [Google Scholar] [CrossRef] [PubMed]
- König, K.; Kobold, U.; Fink, G.; Leinenbach, A.; Dülffer, T.; Thiele, R.; Zander, J.; Vogeser, M. Quantification of vancomycin in human serum by LC-MS/MS. Clin. Chem. Lab. Med. 2013, 51, 1761–1769. [Google Scholar] [CrossRef]
- Lucha, S.; Taibon, J.; Pongratz, S.; Geletneky, C.; Huber, E.; Wintterle-Roehm, C.; Lang, R.; Grimm, S.H.; Duelffer, T.; Tarasov, K.; et al. An LC-MS/MS based candidate reference method for the quantification of total gentamicin in human serum and plasma using NMR characterized calibrator material. Clin. Chim. Acta 2017, 464, 211–217. [Google Scholar] [CrossRef]
- Vogeser, M. Instrument-specific matrix effects of calibration materials in the LC-MS/MS analysis of tacrolimus. Clin. Chem. 2008, 54, 1406–1408. [Google Scholar] [CrossRef]
- Kang, J.; Hick, L.A.; Price, W.E. Using calibration approaches to compensate for remaining matrix effects in quantitative liquid chromatography/electrospray ionization multistage mass spectrometric analysis of phytoestrogens in aqueous environmental samples. Rapid Commun. Mass Spectrom. 2007, 21, 4065–4072. [Google Scholar] [CrossRef] [PubMed]
- Stüber, M.; Reemtsma, T. Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC-ESI-MS. Anal. Bioanal. Chem. 2004, 378, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Tsukada, K. Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J. Chromatogr. A 2002, 943, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Gates, R.A. Multi-Analyst, Multi-Matrix Performance of the QuEChERS Approach for Pesticide Residues in Foods and Feeds Using HPLC/MS/MS Analysis with Different Calibration Techniques. J. AOAC Int. 2010, 93, 355–367. [Google Scholar] [CrossRef]
- Intelmann, D.; Haseleu, G.; Hofmann, T. LC-MS/MS quantitation of hop-derived bitter compounds in beer using the ECHO technique. J. Agric. Food Chem. 2009, 57, 1172–1182. [Google Scholar] [CrossRef]
- Zrostlíková, J.; Hajslová, J.; Poustka, J.; Begany, P. Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J. Chromatogr. A 2002, 973, 13–26. [Google Scholar] [CrossRef]
- Choi, B.K.; Gusev, A.I.; Hercules, D.M. Postcolumn Introduction of an Internal Standard for Quantitative LC−MS Analysis. Anal. Chem. 1999, 71, 4107–4110. [Google Scholar] [CrossRef]
- Rossmann, J.; Renner, L.D.; Oertel, R.; El-Armouche, A. Post-column infusion of internal standard quantification for liquid chromatography-electrospray ionization-tandem mass spectrometry analysis—Pharmaceuticals in urine as example approach. J. Chromatogr. A 2018, 1535, 80–87. [Google Scholar] [CrossRef]
- Liao, H.-W.; Chen, G.-Y.; Tsai, I.-L.; Kuo, C.-H. Using a postcolumn-infused internal standard for correcting the matrix effects of urine specimens in liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 2014, 1327, 97–104. [Google Scholar] [CrossRef]
- Liao, H.-W.; Chen, G.-Y.; Wu, M.-S.; Liao, W.-C.; Lin, C.-H.; Kuo, C.-H. Development of a Postcolumn Infused-Internal Standard Liquid Chromatography Mass Spectrometry Method for Quantitative Metabolomics Studies. J. Proteome Res. 2017, 16, 1097–1104. [Google Scholar] [CrossRef]
- Geyer, R.; Halg, W.; Vogeser, M. Functional Check and Variance Compensation in Mass Spectrometry. U.S. Patent 13/379,180, 25 June 2009. [Google Scholar]
- European Medicines Agency. Guideline on Bioanalytical Method Validation; European Medicines Agency: London, UK, 2011.
- Dubbelman, A.-C.; van Wieringen, B.; Roman Arias, L.; van Vliet, M.; Vermeulen, R.; Harms, A.; Hankemeier, T. Strategies for using post-column infusion of standards to correct for matrix effect in LC-MS-based quantitative metabolomics. ChemRxiv Anal. Chem. 2024, 1–9. [Google Scholar] [CrossRef]
- Tan, A.; Awaiye, K. Use of internal standards in LC-MS bioanalysis. In Handbook of LC-MS Bioanalysis: Best Practices, Experimental Protocols, and Regulations; Li, W., Zhang, J., Tse, F.L.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 217–226. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Regal, P.; Lamas, A.; Franco, C.M.; Cepeda, A. Veterinary Drugs: Progress in Multiresidue Technique. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 470–480. ISBN 9780128140451. [Google Scholar]
Measurand | Precursor Ion, m/z | Product Ion, m/z | CE, V | Retention Time, min |
---|---|---|---|---|
Tacrolimus | 821.7000 | 768.7000 | 18 | 1.43 |
Tacolimus-IS | 821.7001 | 768.7001 | 18 | 1.43 |
Ascomycin | 809.7000 | 756.7000 | 20 | 1.43 |
QC | Concentration, ng/mL | Intra-Day (n = 5) Inaccuracy, % | Intra-Day (n = 5) Imprecision, % | Inter-Day (n = 3) Inaccuracy, % | Inter-Day (n = 3) Imprecision, % |
---|---|---|---|---|---|
QC I | 2.75 | −14.8 | 2.53 | 2.75 | 12.5 |
QCII | 7.51 | −10.1 | 4.78 | −14.7 | 9.56 |
QC III | 15.7 | −5.70 | 2.22 | −12.1 | 9.84 |
QC IV | 33.2 | −12.1 | 5.01 | −13.9 | 7.65 |
Calibrator/QC | Concentration Tacrolimus, ng/mL |
---|---|
Blank | - |
Calibrator 1 | 2.22 |
Calibrator 2 | 5.75 |
Calibrator 3 | 11.6 |
Calibrator 4 | 17.4 |
Calibrator 5 | 23.9 |
Calibrator 6 | 42.0 |
QC I | 2.75 |
QC II | 7.51 |
QC III | 15.7 |
QC IV | 33.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habler, K.; Rexhaj, A.; Happich, F.L.; Vogeser, M. Standardization via Post Column Infusion—A Novel and Convenient Quantification Approach for LC-MS/MS. Molecules 2024, 29, 3829. https://doi.org/10.3390/molecules29163829
Habler K, Rexhaj A, Happich FL, Vogeser M. Standardization via Post Column Infusion—A Novel and Convenient Quantification Approach for LC-MS/MS. Molecules. 2024; 29(16):3829. https://doi.org/10.3390/molecules29163829
Chicago/Turabian StyleHabler, Katharina, Arber Rexhaj, Felix L. Happich, and Michael Vogeser. 2024. "Standardization via Post Column Infusion—A Novel and Convenient Quantification Approach for LC-MS/MS" Molecules 29, no. 16: 3829. https://doi.org/10.3390/molecules29163829
APA StyleHabler, K., Rexhaj, A., Happich, F. L., & Vogeser, M. (2024). Standardization via Post Column Infusion—A Novel and Convenient Quantification Approach for LC-MS/MS. Molecules, 29(16), 3829. https://doi.org/10.3390/molecules29163829