Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities
Abstract
:1. Introduction
2. Toxicity
3. 2,4-D-Degrading Microorganisms
4. Bacterial and Fungal Degradation Pathways of 2,4-D
5. Genes and Enzymes Associated with the Degradation of 2,4-D
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freisthler, M.S.; Robbins, C.R.; Benbrook, C.M.; Young, H.A.; Haas, D.M.; Winchester, P.D. Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: Findings from the National Health and Nutrition Examination Survey, 2001–2014. Environ. Health Perspect. 2022, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- RED. Reregistration Eligibility Decision (RED) 2,4-D; EPA 738-R-05-002; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, USA, 2005. [Google Scholar]
- Williams, S.B.; Janes, J.L.; Howard, L.E.; Yang, R.; De Hoedt, A.M.; Baillargeon, J.G. Exposure to agent orange and risk of bladder cancer among US Veterans. JAMA. Netw. Open. 2023, 6, e2320593. [Google Scholar] [CrossRef]
- Kaul, B.; Lee, J.S.; Glidden, D.V.; Blanc, P.D.; Zhang, N.; Collard, H.R. Agent orange exposure and risk of idiopathic pulmonary fibrosis among U.S. Veterans. Am. J. Respir. Crit. Care. Med. 2022, 206, 750–757. [Google Scholar] [CrossRef]
- Martinez, S.; Yaffe, K.; Li, Y.; Byers, A.L.; Peltz, C.B.; Barnes, D.E. Agent orange exposure and dementia diagnosis in US Veterans of the Vietnam era. JAMA Neurol. 2021, 78, 473–477. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Dong, F.; Xu, J.; Zheng, Y.; Li, J. Soil microbial communities response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol. 2010, 46, 175–180. [Google Scholar] [CrossRef]
- Merini, L.J.; Cuadrado, V.; Flocco, C.G.; Giulietti, A.M. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: A microcosm study. Chemosphere 2007, 68, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Goggin, D.E.; Cawthray, G.R.; Powles, S.B. 2,4-D resistance in wild radish: Reduced herbicide translocation via inhibition of cellular transport. J. Exp. Bot. 2016, 67, 3223–3235. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, M.B.; Walsh, M.J.; Flower, K.C.; Powles, S.B. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.). Pest Manag. Sci. 2016, 72, 2091–2098. [Google Scholar] [CrossRef]
- Lei, Q.; Zhong, J.; Chen, S.; Wu, S.; Huang, Y.; Guo, P. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. Environ. Res. 2023, 235, 116570. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Lei, Q.; Song, H.; Chen, S.; Bhatt, K. New roles for Bacillus thuringiensis in the removal of environmental pollutants. Environ. Res. 2023, 236, 116699. [Google Scholar] [CrossRef] [PubMed]
- Romero-Puertas, M.C.; Peláez-Vico, M.Á.; Pazmiño, D.M.; Rodríguez-Serrano, M.; Terrón-Camero, L.; Bautista, R. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. Plant. Cell Environ. 2022, 45, 572–590. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Serrano, M.; Pazmiño, D.M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M.C. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. J. Exp. Bot. 2014, 65, 4783–4793. [Google Scholar] [CrossRef] [PubMed]
- Song, Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant. Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, C.; Ong, E.K.; Dalling, M.J.; Stevenson, T.W. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genom. 2006, 6, 60–70. [Google Scholar] [CrossRef]
- Pazmiño, D.M.; Romero-Puertas, M.C.; Sandalio, L.M. Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal. Behav. 2012, 7, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Smith, D.R.; Livingston, S.; Warnemuende-Pappas, E.; Zwonitzer, M. Blind inlets: Conservation practices to reduce herbicide losses from closed depressional areas. J. Soils Sediments 2016, 16, 1921–1932. [Google Scholar] [CrossRef]
- Ismail, B.S.; Prayitno, S.; Tayeb, M.A. Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah, Malaysia. Environ. Monit. Assess. 2015, 187, 406. [Google Scholar] [CrossRef]
- Zahm, S.H.; Blair, A. Pesticides and non-Hodgkin’s lymphoma. Cancer Res. 1992, 52, 5485s–5488s. [Google Scholar]
- Alexander, B.H.; Mandel, J.S.; Baker, B.A.; Burns, C.J.; Bartels, M.J.; Acquavella, J.F. Biomonitoring of 2,4-dichlorophenoxyacetic acid exposure and dose in farm families. Environ. Health. Perspect. 2007, 115, 370–376. [Google Scholar] [CrossRef]
- Grossmann, K. Mediation of herbicide effects by hormone interactions. J. Plant Growth Regul. 2003, 22, 109–122. [Google Scholar] [CrossRef]
- Dayan, F.E.; Duke, S.O.; Grossmann, K. Herbicides as Probes in Plant Biology. Weed Sci. 2010, 58, 340–350. [Google Scholar] [CrossRef]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Aquino, A.; Tunega, D.; Haberhauer, G.; Gerzabek, M.; Lischka, H. Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties: A theoretical study. Eur. J. Soil Sci. 2007, 58, 889–899. [Google Scholar] [CrossRef]
- Li, Z.F.; Dong, J.X.; Vasylieva, N.; Cui, Y.L.; Wan, D.B.; Hua, X.D. Highly specific nanobody against herbicide 2,4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water. Sci. Total Environ. 2021, 753, 141950. [Google Scholar] [CrossRef] [PubMed]
- Félix-Cañedo, T.E.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci. Total Environ. 2013, 454–455, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Kuster, M.; López de Alda, M.J.; Hernando, M.D.; Petrovic, M.; Martín-Alonso, J.; Barceló, D. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J. Hydrol. 2008, 358, 112–123. [Google Scholar] [CrossRef]
- Bhatt, P.; Udayanga, D.; Chen, S. Microbial engineering to reduce the synthetic pollutants from the environment. Chemosphere 2023, 334, 138919. [Google Scholar] [CrossRef]
- Corcoran, S.; Metcalfe, C.D.; Sultana, T.; Amé, M.V.; Menone, M.L. Pesticides in Surface Waters in Argentina Monitored Using Polar Organic Chemical Integrative Samplers. Bull. Environ. Contam. Toxicol. 2020, 104, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Peluso, J.; Pérez Coll, C.S.; Cristos, D.; Rojas, D.E.; Aronzon, C.M. Comprehensive assessment of water quality through different approaches: Physicochemical and ecotoxicological parameters. Sci. Total Environ. 2021, 800, 149510. [Google Scholar] [CrossRef]
- Glozier, N.E.; Struger, J.; Cessna, A.J.; Gledhill, M.; Rondeau, M.; Ernst, W.R. Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ. Sci. Pollut. Res. Int. 2012, 19, 821–834. [Google Scholar] [CrossRef]
- Cardenas, M.A.; Ali, I.; Lai, F.Y.; Dawes, L.; Thier, R.; Rajapakse, J. Removal of micropollutants through a biological wastewater treatment plant in a subtropical climate, Queensland-Australia. J. Environ. Health Sci. Eng. 2016, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Nejati, K.; Davary, S.; Saati, M. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution. Appl. Surf. Sci. 2013, 280, 67–73. [Google Scholar] [CrossRef]
- Werner, D.; Garratt, J.A.; Pigott, G. Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. J. Soils Sediments 2013, 13, 129–139. [Google Scholar] [CrossRef]
- Wijnja, H.; Doherty, J.J.; Safie, S.A. Changes in pesticide occurrence in suburban surface waters in Massachusetts, USA, 1999–2010. Bull. Environ. Contam. Toxicol. 2014, 93, 228–232. [Google Scholar] [CrossRef]
- McManus, S.L.; Moloney, M.; Richards, K.G.; Coxon, C.E.; Danaher, M. Determination and occurrence ofphenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 2014, 19, 20627–20649. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.; Liu, S.S.; Xu, Y.Q.; Li, K. Combined toxicity of 2,4-dichlorophenoxyacetic acid and its metabolites 2,4-dichlorophenol (2,4-DCP) on two nontarget organisms. ACS Omega 2019, 4, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.K.; Strauss, W.J.; Iroz-Elardo, N.; Chuang, J.C. Exposures of preschool children to chlorpyrifos, diazinon, pentachlorophenol, and 2,4-dichlorophenoxyacetic acid over 3 years from 2003 to 2005: A longitudinal model. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Wu, S.; Chen, W.; Huang, Y.; Lei, Q.; Mishra, S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. Chemosphere 2023, 326, 138390. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Bhatt, K.; Sharma, A.; Zhang, W.; Mishra, S.; Chen, S. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol. 2021, 41, 317–338. [Google Scholar] [CrossRef]
- Chinalia, F.A.; Killham, K.S. 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere 2006, 64, 1675–1683. [Google Scholar] [CrossRef]
- María, C.; Zabaloy; Jay, L.; Garland; Gomez, M.A. Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil. Appl. Soil Ecol. 2010, 46, 240–246. [Google Scholar]
- Li, J.; Chen, W.; Zhang, W.; Zhang, Y.; Lei, Q.; Wu, S. Effects of free or immobilized bacterium Stenotrophomonas acidaminiphila Y4B on glyphosate degradation performance and indigenous microbial community structure. J. Agric. Food Chem. 2022, 70, 13945–13958. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality. Fourth Edition Incorporating the First Addenum. 2017. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 1 June 2024).
- Balakrishnan, A.; Appunni, S.; Gopalram, K. Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Int. J. Biol. Macromol. 2020, 161, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cai, J.; Zhou, M.; Du, X.; Zhang, Y. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped blue TiO2 nanotube arrays with formic acid as electrolyte. J. Hazard. Mater. 2020, 382, 121096. [Google Scholar] [CrossRef] [PubMed]
- Bradu, C.; Magureanu, M.; Parvulescu, V.I. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system. J. Hazard. Mater. 2017, 336, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Hama Aziz, K.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 07–115. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Gangola, S.; Ramola, S.; Bilal, M.; Bhatt, K.; Huang, Y. Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol. Res. 2023, 266, 127247. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, W.; Huang, Y.; Li, J.; Zhong, J.; Zhang, W. Insights into the microbial degradation and resistance mechanisms of glyphosate. Environ. Res. 2022, 215, 114153. [Google Scholar] [CrossRef]
- Chen, S.F.; Chen, W.J.; Huang, Y.; Wei, M.; Chang, C. Insights into the metabolic pathways and biodegradation mechanisms of chloroacetamide herbicides. Environ. Res. 2023, 229, 115918. [Google Scholar] [CrossRef]
- Bhatt, P.; Rene, E.R.; Kumar, A.J.; Gangola, S.; Kumar, G.; Sharma, A. Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. Chemosphere 2021, 276, 130156. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.S.; Gao, J.J.; Xu, J.; Li, Z.J.; Fu, X.Y. Complete biodegradation of the oldest organic herbicide 2,4-Dichlorophenoxyacetic acid by engineering Escherichia coli. J. Hazard. Mater. 2023, 451, 131099. [Google Scholar] [CrossRef]
- Serbent, M.P.; Rebelo, A.M.; Pinheiro, A.; Giongo, A.; Tavares, L.B.B. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation. Appl. Microbiol. Biotechnol. 2019, 103, 5065–5078. [Google Scholar] [CrossRef] [PubMed]
- Chong, N.M.; Chang, H.W. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid. Bioresour. Technol. 2009, 100, 1174–1179. [Google Scholar] [CrossRef]
- Mountassif, D.; Kabine, M.; Mounchid, K.; Mounaji, K.; Latruffe, N.; El Kebbaj, M.H.S. Biochemical and histological alterations of cellular metabolism from jerboa (Jaculus orientalis) by 2,4-dichlorophenoxyacetic acid, effects on D-3-hydroxybutyrate dehydrogenase. Pestic. Biochem. Physiol. 2008, 90, 87–96. [Google Scholar] [CrossRef]
- de Figueiredo, M.R.A.; Barnes, H.; Boot, C.M.; de Figueiredo, A.B.T.B.; Nissen, S.J.; Dayan, F.E. Identification of a novel 2,4-D metabolic detoxification pathway in 2,4-D-resistant waterhemp (Amaranthus tuberculatus). J. Agric. Food Chem. 2022, 70, 15380–15389. [Google Scholar] [CrossRef]
- Ordaz-Guillén, Y.; Galíndez-Mayer, C.J.; Ruiz-Ordaz, N.; Juárez-Ramírez, C.; SantoyoTepole, F.; Ramos-Monroy, O. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ. Sci. Pollut. Res. 2014, 21, 8765–8773. [Google Scholar] [CrossRef]
- Kearns, J.; Wellborn, L.; Summers, R.; Knappe, D. 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Gaultier, J.; Farenhorst, A.; Cathcart, J.; Goddard, T. Degradation of [carboxyl-14 C] 2,4-D and [ring-U-14 C] 2,4-D in 114 agricultural soils as affected by soil organic carbon content. Soil Biol. Biochem. 2008, 40, 217–227. [Google Scholar] [CrossRef]
- da Silva, A.P.; Poquioma Hernández, H.V.; Comelli, C.L.; Guillén Portugal, M.A.; Moreira Delavy, F.; de Souza, T.L. Meta-analytical review of antioxidant mechanisms responses in animals exposed to herbicide 2,4-D herbicide. Sci. Total Environ. 2024, 924, 171680. [Google Scholar] [CrossRef] [PubMed]
- Salman, J.; Hameed, B. Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 2010, 256, 129–135. [Google Scholar] [CrossRef]
- IARC. Working group on the evaluation of Carcinogenic risks to humans. In DDT, Lindane, and 2,4-D; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- WHO. World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. 2019. Available online: https://www.who.int/publications/i/item/9789240005662 (accessed on 1 June 2024).
- Ganguli, A.; Choudhury, D.; Chakrabarti, G. 2,4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network. Toxicol. Res. 2014, 3, 118–130. [Google Scholar] [CrossRef]
- Tayeb, W.; Chaieb, I.; Hammami, M. Environmental fate and effects of 2,4-dichlorophenoxyacetic herbicide. In Herbicides: Properties, Crop Protection and Environmental Hazards; Nova Science Pub. Inc.: Hauppauge, NY, USA, 2011; pp. 245–262. [Google Scholar]
- Soloneski, S.; González, N.V.; Reigosa, M.A.; Larramendy, M.L. Herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes. Cell Biol. Int. 2007, 31, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Arcaute, C.; Soloneski, S.; Larramendy, M.L. Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Saf. 2016, 128, 222–229. [Google Scholar] [CrossRef]
- Ruiz de Arcaute, C.; Larramendy, M.L.; Soloneski, S. Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces: Poeciliidae). Environ. Pollut. 2018, 243, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Ateeq, B.; Abul Farah, M.; Ahmad, W. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol. Environ. Saf. 2005, 62, 348–354. [Google Scholar] [CrossRef]
- Curi, L.M.; Peltzer, P.M.; Sandoval, M.T.; Lajmanovich, R.C. Acute toxicity and sublethal effects caused by a commercial herbicide formulated with 2,4-D on Physalaemus albonotatus Tadpoles. Water Air Soil Poll. 2019, 230, 22. [Google Scholar] [CrossRef]
- Tayeb, W.; Nakbi, A.; Trabelsi, M.; Attia, N.; Miled, A.; Hammami, M. Hepatotoxicity induced by sub-acute exposure of rats to 2,4-Dichlorophenoxyacetic acid based herbicide “Désormone lourd”. J. Hazard. Mater. 2010, 180, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.C.; Andreotti, G.; Ospina, M.; Parks, C.G.; Liu, D.; Shearer, J.J. Glyphosate exposure and urinary oxidative stress biomarkers in the Agricultural Health Study. J. Natl. Cancer Inst. 2023, 115, 394–404. [Google Scholar] [CrossRef]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 2016, 124, 713–721. [Google Scholar] [CrossRef]
- Lerro, C.C.; Beane Freeman, L.E.; Portengen, L.; Kang, D.; Lee, K.; Blair, A. A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among iowa corn farmers. Environ. Mol. Mutagen. 2017, 58, 30–38. [Google Scholar] [CrossRef]
- Tan, Z.; Zhou, J.; Chen, H.; Zou, Q.; Weng, S.; Luo, T. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro. J. Toxicol. Sci. 2016, 41, 543–549. [Google Scholar] [CrossRef]
- Zuanazzi, N.R.; Ghisi, N.C.; Oliveira, E.C. Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: A scientometric review. Chemosphere 2020, 241, 125016. [Google Scholar] [CrossRef]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef]
- Wu, X.; Wang, W.; Liu, J.; Pan, D.; Tu, X.; Lv, P. Rapid biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by Cupriavidus gilardii T-1. J. Agric. Food Chem. 2017, 65, 3711–3720. [Google Scholar] [CrossRef]
- Dai, Y.; Li, N.; Zhao, Q.; Xie, S. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 2015, 26, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhao, D.; Li, C. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz. J. Microbiol. 2015, 46, 433–441. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, S.; Chen, W.; Zhu, X.; Mishra, S.; Bhatt, P. Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chem. Eng. J. 2023, 469, 143863. [Google Scholar] [CrossRef]
- Pang, S.; Lin, Z.; Chen, W.; Chen, S.; Huang, Y.; Lei, Q. High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. J. Hazard. Mater. 2023, 452, 131287. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Lin, R.; Shang, H.; Xu, Y.; Zhang, Z.; Wu, X. Efficient degradation of phenoxyalkanoic acid herbicides by the alkali-tolerant Cupriavidus oxalaticus strain X32. J. Agric. Food Chem. 2020, 68, 3786–3795. [Google Scholar] [CrossRef]
- Cycoń, M.; Żmijowska, A.; Piotrowska-Seget, Z. Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. Open Life Sci. 2011, 6, 188–198. [Google Scholar] [CrossRef]
- Shimojo, M.; Kawakami, M.; Amada, K. Analysis of genes encoding the 2,4-dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1. J. Biosci. Bioeng. 2009, 108, 56–59. [Google Scholar] [CrossRef]
- Vedler, E.; Vahter, M.; Heinaru, A. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J. Bacteriol. 2004, 186, 7161–7174. [Google Scholar] [CrossRef]
- Huang, X.; He, J.; Yan, X.; Hong, Q.; Chen, K.; He, Q. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 2017, 143, 272–297. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Kanda, R.; Sumita, Y.; Kim, H.; Kamagata, Y.; Suyama, K. tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in alpha-Proteobacteria. Appl. Environ. Microbiol. 2002, 68, 3449–3454. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Tashiro, Y.; Uobe, K.; Kamagata, Y.; Suyama, K.; Yamamoto, H. Root nodule Bradyrhizobium spp. harbor tfdA-alpha and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl. Environ. Microbiol. 2004, 70, 2110–2118. [Google Scholar] [CrossRef]
- Zabaloy, M.C.; Garland, J.L.; Gomez, M.A. An integrated approach, to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl Soil Ecol. 2008, 40, 1–12. [Google Scholar] [CrossRef]
- Macur, R.E.; Wheeler, J.T.; Burr, M.D.; Inskeep, W.P. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Microbiol. Res. 2007, 162, 37–45. [Google Scholar] [CrossRef]
- Zaprasis, A.; Liu, Y.J.; Liu, S.J.; Drake, H.L.; Horn, M.A. Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Appl. Environ. Microbiol. 2010, 76, 119–128. [Google Scholar] [CrossRef]
- Pepper, I.L.; Gentry, T.J.; Newby, D.T.; Roane, T.M.; Josephson, K.L. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ. Health Perspect. 2002, 110, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.C.; Tang, H.; Xiong, W.C.; Yang, Z.F. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J. Hazard. Mater. 2010, 179, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.C.; Ma, J.Y.; Xiong, W.C.; Yang, Z.F. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules. J. Hazard. Mater. 2011, 196, 278–286. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Janssen, A.J.H.; Muyzer, G. Biodegradation potential of halo(alkali)philic prokaryotes. Crit. Rev. Environ. Sci. 2012, 42, 811–856. [Google Scholar] [CrossRef]
- Zharikova, N.V.; Iasakov, T.R.; Zhurenko, E.Y. Bacterial genes of 2,4-dichlorophenoxyacetic acid degradation encoding α-ketoglutarate-dependent dioxygenase activity. Biol. Bull Rev. 2018, 8, 155–167. [Google Scholar] [CrossRef]
- Baelum, J.; Nicolaisen, M.H.; Holben, W.E.; Strobel, B.W.; Sørensen, J.; Jacobsen, C.S. Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J. 2008, 2, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Kamagata, Y.; Fulthorpe, R.R.; Tamura, K.; Takami, H.; Forney, L.J.; Tiedje, J.M. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl. Environ. Microbiol. 1997, 63, 2266–2272. [Google Scholar] [CrossRef]
- Itoh, K.; Kanda, R.; Momoda, Y. Presence of 2,4-dcatabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in alpha-Proteobacteria. Microbes Environ. 2000, 15, 113–117. [Google Scholar] [CrossRef]
- Hayashi, S.; Tanaka, S.; Takao, S.; Kobayashi, S.; Suyama, K.; Itoh, K. Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes Environ. 2021, 36, ME21016. [Google Scholar] [CrossRef]
- Pimviriyakul, P.; Wongnate, T.; Tinikul, R.; Chaiyen, P. Microbial degradation of halogenated aromatics: Molecular mechanisms and enzymatic reactions. Microb. Biotechnol. 2020, 13, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Chinalia, F.A.; Regali-Seleghin, M.H.; Corre, E.M. 2,4-D toxicity: Cause, effect and control. Terr. Aquat. Environ. Toxicol. 2007, 1, 24–33. [Google Scholar]
- Balajee, S.; Mahadevan, A. Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum. Xenobiotica 1990, 20, 607–617. [Google Scholar] [CrossRef]
- Nielsen, T.K.; Xu, Z.; Gözdereliler, E.; Aamand, J.; Hansen, L.H.; Sørensen, S.R. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. PLoS ONE 2013, 8, e83346. [Google Scholar] [CrossRef]
- Kumar, A.; Trefault, N.; Olaniran, A.O. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit. Rev. Microbiol. 2016, 42, 194–208. [Google Scholar] [CrossRef]
- Vanitha, T.K.; Suresh, G.; Bhandi, M.M.; Mudiam, M.K.R.; Mohan, S.V. Microbial degradation of organochlorine pesticide: 2,4-Dichlorophenoxyacetic acid by axenic and mixed consortium. Bioresour. Technol. 2023, 382, 129031. [Google Scholar] [CrossRef]
- Bhosle, N.P.; Thore, A.S. Biodegradation of the herbicide 2,4-D by some fungi. Am. Eurasian J. Agric. Environ. Sci. 2016, 16, 1666–1671. [Google Scholar]
- Leitão, A.L.; García-Estrada, C.; Ullán, R.V.; Guedes, S.F.; Martín-Jiménez, P.; Mendes, B. Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments. Microbiol. Res. 2012, 167, 79–89. [Google Scholar]
- Vroumsia, T.; Steiman, R.; Seigle-Murandi, F.; Benoit-Guyod, J.L. Groupe pour l’Etude du Devenir des Xénobiotiques dans l’Environment (GEDEXE). Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). Chemosphere 2005, 60, 1471–1480. [Google Scholar] [CrossRef]
- Ferreira-Guedes, S.; Mendes, B.; Leitão, A.L. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: Antibiotic production. Environ. Techn. 2012, 33, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Osawa, S.; Hirata, T.; Yamagishi, Y.; Hosoda, J.; Horikoshi, T. 2,4-Dichlorophenol degradation by the soil fungus Mortierella sp. Biosci. Biotechnol. Biochem. 2006, 70, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.V.B.; Joshi, D.K.; Gold, M.H. Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiology 1997, 143, 2353–2360. [Google Scholar] [CrossRef]
- Valli, K.; Gold, M.H. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 1991, 173, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.R.; Woodcock, D. Metabolism of phenoxy-acetic acid by Aspergillus niger van Tiegh. Nature 1964, 203, 763. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.K.; Woodcock, D. Fungal detoxification. Part VII. Metabolism of 2,4-dichloro-phenoxyacetic and 4-chloro-2-methylphenoxyacetic acids by Aspergillusniger. J. Chem. Soc. 1965, 209, 1187–1191. [Google Scholar]
- Magnoli, K.; Carranza, C.; Aluffi, M.; Magnoli, C.; Barberis, C. Fungal biodegradation of chlorinated herbicides: An overview with an emphasis on 2,4-D in Argentina. Biodegradation 2023, 34, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Shailubhai, K.; Sahasrabudhe, S.R.; Vora, K.; Modi, V.V. Degradation of chlorinated derivatives of phenoxyacetic acid and benzoic acid by Aspergillus niger. FEMS Microbiol. Lett. 1983, 18, 279–282. [Google Scholar] [CrossRef]
- Sandoval-Carrasco, C.A.; Ahuatzi-Chacón, D.; Galíndez-Mayer, J.; Ruiz-Ordaz, N.; Juárez-Ramírez, C.; Martínez-Jerónimo, F. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Bioresour. Technol. 2013, 145, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Vallaeys, T.; Albino, L.; Soulas, G. Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol. Lett. 1998, 20, 1073–1076. [Google Scholar] [CrossRef]
- Don, R.H.; Weightman, A.J.; Knackmuss, H.J.; Timmis, K.N. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J. Bacteriol. 1985, 161, 85–90. [Google Scholar] [CrossRef]
- Don, R.H.; Pemberton, J.M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 1981, 145, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Hausinger, R.P.; Fukumori, F. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism. Environ. Health Perspect. 1995, 103, 37–39. [Google Scholar]
- Iasakov, T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int. J. Mol. Sci. 2023, 24, 14370. [Google Scholar] [CrossRef]
- Thiel, M.; Kaschabek, S.R.; Gröning, J.; Mau, M.; Schlömann, M. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch. Microbiol. 2005, 183, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Streber, W.R.; Timmis, K.N.; Zenk, M.H. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J. Bacteriol. 1987, 169, 2950–2955. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, C.W.; Vallaeys, T.; Burton, S.K. Substrate specificity of chlorophenoxyalkanoic acid-degrading bacteria is not dependent upon phylogenetically related tfdA gene types. Biol. Fertil. Soils 2001, 33, 507–513. [Google Scholar] [CrossRef]
- Kim, D.U.; Kim, M.S.; Lim, J.S.; Ka, J.O. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712. Plasmid 2013, 69, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, W.; Takami, S.; Miyauchi, K.; Masai, E.; Kamagata, Y.; Tiedje, J.M. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J. Bacteriol. 2002, 184, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Leveau, J.H.; Zehnder, A.J.; van der Meer, J.R. The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J. Bacteriol. 1998, 180, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, W.; Kamagata, Y. Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative genes and degrading bacteria. In Biodegradative Bacteria; Nojiri, H., Tsuda, M., Fukuda, M., Kamagata, Y., Eds.; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Hayashi, S.; Sano, T.; Suyama, K.; Itoh, K. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol. Res. 2016, 188–189, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.R.; Shan, G.; Walsh, T.A.; Lira, J.M.; Cui, C.; Song, P. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. USA 2010, 107, 20240–20245. [Google Scholar] [CrossRef] [PubMed]
- Bayley, C.; Trolinder, N.; Ray, C.; Morgan, M.; Quisenberry, J.E.; Ow, D.W. Engineering 2,4-D resistance into cotton. Theor. Appl. Genet. 1992, 83, 645–649. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, A.; Yadav, A.N. Fungal enzymes: Degradation and detoxification of organic and inorganic pollutants. In Recent Trends in Mycological Research. Fungal Biology; Yadav, A.N., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Maithani, D.; Mishra, S.; Gangola, S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. J. Hazard. Mater. 2021, 420, 126618. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Rene, E.R.; Kumar, A.J.; Zhang, W.; Chen, S. Binding interaction of allethrin with esterase: Bioremediation potential and mechanism. Bioreour. Technol. 2020, 315, 123845. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Bhatt, K.; Chen, W.; Huang, Y.; Xiao, Y.; Wu, S. Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. J. Hazard. Mater. 2023, 443, 130319. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Zhou, X.; Huang, Y.; Zhang, W.; Chen, S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 2021, 411, 125026. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Dao, A.T.N.; Dang, H.T.C.; Koekkoek, J.; Brouwer, A.; de Boer, T.E. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Biodegradation 2022, 33, 301–316. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Smith, A.R.; Beadle, C.A. Induction of enzymes of 2,4-dichlorophenoxyacetate degradation in Burkholderia cepacia 2a and toxicity of metabolic intermediates. Biodegradation 2008, 19, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Nykiel-Szymańska, J.; Stolarek, P.; Bernat, P. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ. Sci. Pollut. Res. Int. 2018, 25, 2738–2743. [Google Scholar] [CrossRef]
- Hoffmann, D.; Kleinsteuber, S.; Müller, R.H.; Babel, W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 2003, 149, 2545–2556. [Google Scholar] [CrossRef]
- Wu, C.Y.; Zhuang, L.; Zhou, S.G.; Yuan, Y.; Yuan, T.; Li, F.B. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb. Biotechnol. 2013, 6, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Ma, J.; Xiong, W.; Wang, X. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules. Bioprocess. Biosyst. Eng. 2015, 38, 1081–1090. [Google Scholar] [CrossRef]
- Musarrat, J.; Bano, N.; Rao, R. Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World J. Microbiol. Biotechnol. 2000, 16, 495–497. [Google Scholar] [CrossRef]
- Markusheva, T.V.; Zhurenko, E.Y.; Galkin, E.G. Identification and characterization of a plasmid in strain Aeronomas hydrophila IBRB-36 4CPA carrying genes for catabolism of chlorophenoxyacetic acids. Russ. J. Genet. 2004, 40, 1210–1214. [Google Scholar] [CrossRef]
- Kleinsteuber, S.; Müller, R.H.; Babel, W. Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 2001, 5, 375–384. [Google Scholar] [CrossRef]
- Igbinosa, O.E.; Ajisebutu, O.S.; Okoh, I.A. Aerobic dehalogenation activities of two petroleum degrading bacteria. Afr. J. Biotechnol. 2007, 6, 897–901. [Google Scholar]
- Chang, Y.C.; Reddy, M.V.; Umemoto, H.; Sato, Y.; Kang, M.H.; Yajima, Y. Bio-augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: Microbial community analysis by culture dependent and independent techniques. PLoS ONE 2015, 10, e0145057. [Google Scholar] [CrossRef]
- Xia, Z.Y.; Zhang, L.; Zhao, Y.; Yan, X.; Li, S.P.; Gu, T. Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr. Microbiol. 2017, 74, 193–202. [Google Scholar] [CrossRef]
- González, A.; Gallego, A.; Gemini, V.L.; Papalia, M.; Radice, M.A.; Gutkind, G. Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int. Biodeterior. Biodegrad. 2012, 66, 8–13. [Google Scholar] [CrossRef]
- Carboneras, B.; Villaseñor, J.; Fernandez-Morales, F.J. Modelling aerobic biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by mixed-cultures. Bioresour. Technol. 2017, 243, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, V.; Gomila, M.; Merini, L.; Giulietti, A.M.; Moore, E.R.B. Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.; Stets, M.I.; Mazzetto, A.M.; Andrade, F.D.; Pileggi, S.A.V.; Fávero, P.R. Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz. J. Microbiol. 2007, 38, 522–525. [Google Scholar] [CrossRef]
- Bernat, P.; Nykiel-Szymańska, J.; Stolarek, P.; Słaba, M.; Szewczyk, R.; Różalska, S. 2,4-Dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS ONE 2018, 13, e0199677. [Google Scholar] [CrossRef] [PubMed]
- Mendieta, E.H.; Sánchez, D.G.; Tejacal, I.A.; Martínez, V.L.; Rodríguez, M.A.; Fernández, E.M. Degradation kinetics of 2,4-dichlorophenoxyacetic and atrazine by Trametes versicolor (L.:Fr.) Pilát. Afr. J. Biotechnol. 2018, 17, 1445–1454. [Google Scholar]
Microorganisms | Sources | Degradation Efficiency | Initial 2,4-D Concentration | Incubation Conditions | Comments | References | |
---|---|---|---|---|---|---|---|
Cupriavidus gilardii T-1 | A soybean field | 100% in 20 h | 100 mg/L | pH 7.0–9.0, 37–42 °C | Fast degradation of 2,4-D and its analogues highlights the potential for the use of C. gilardii T-1 in bioremediation of PAA herbicides. | [79] | |
Novosphingobium DY4 | A paddy-planted field site | More than 95% in 5–7 d | 200 mg/kg | pH 7.2, 30 °C | DY4 contained the TfdAα gene (converting 2,4-D into 2,4-DCP). | [80] | |
Cupriavidus campinensis BJ71 | Soil | 99.57% in 6 d | 350 mg/L | pH 7.0, 30 °C | Strain BJ71 could also degrade quizalofop and fluroxypyr. | [81] | |
Cupriavidus oxalaticus X32 | Sewage sludge | 100% within 3 d | 500 mg/L | 30 °C, pH 6.5 | X32 still functioned at a pH of 10.5. | [82] | |
Delftia acidovorans P4a | Concrete samples of herbicide plant | ND | ND | ND | A chromosomally located catabolic transposon carries genes for a complete 2,4-D degradation pathway. | [83] | |
Corynebacterium humireducens MFC-5 | MFC | ND | ND | pH 10.0 | The reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators. | [84] | |
Achromobacter sp. QXH | A mixture of soil and activated sludge | ND | ND | ND | Bioaugmentation promoted the steady transformation of glucose-grown granules into 2,4-D-degrading sludge granules and fast establishment of 2,4-D degradation ability. | [85] | |
Burkholderia cepacia DS-1, Pseudomonas sp. DS-2, Sphingomonas paucimobilis DS-3 | Soil | 69%, 73%, and 54% in 10 d, respectively | 50 mg/L | 30 ± 1 °C | Strains DS-1 and DS-2 may additionally possess the potential to metabolize 2,4-DCP. | [86] | |
Sphingomonas agrestis 58-1 | Soil | ND | ND | 30 °C | Induced the overexpression of the cadAB genes using E. coli as the host strain. | [87] | |
Achromobacter xylosoxidans subsp. denitrificans strain EST4002 | Soil | ND | ND | ND | EST4002 contains plasmid pEST4011. | [88] | |
Variovorax paradoxus TV1 | Soil | ND | ND | ND | The PTV1 partial tfdA sequence showed 77% similarity to the archetypal tfdA gene sequence from C. necator JMP134. | [89] | |
Sphingomonas sp. TFD44 | Herbicide wastewater treatment facility | ND | ND | ND | Strain TFD 44’s tfdI gene cluster and pJP4’s tfdII gene cluster share some common characteristics. | [90] | |
Bradyrhizobium sp. strain HW13 | Hawaiian soil | ND | ND | 30 °C | A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized. | [91] | |
Bradyrhizobium elkanii USDA94 | Soil | ND | ND | ND | The cad cluster in the ordinary root-nodulating B. elkanii USDA94 had the ability to degrade 2,4-D and 2,4,5-T. | [92] | |
Pseudomonas sp. NJ 10, Pseudomonas aeruginosa NJ 15 | Agricultural soil | 96.6% and 99.8% in 20 d, respectively | 100 mg/L | pH 7.0, 37 °C | The isolated strains possess phosphate-solubilizing capabilities. | [93] | |
Aeronomas hydrophila IBRB-36 4CPA | ND | ND | ND | ND | Plasmid pAH36 contains a gene for chlorine-substituted phenoxyacetic acid catabolism. | [94] | |
Halomonas sp. EF43 | Alkaline lake sediment | ND | ND | 30 °C, pH 10.0 | Strain EF43 can stably maintain the pJP4 plasmid carrying the 2,4-D degradation genes. | [95] | |
Corynebacterium sp. SOGU16, Achromobacter sp. SOGU11 | Oil-contaminated soils | ND | ND | pH 7.2, 27 ± 2 °C | The optimum pH for dioxygenase-specific activities was between 7.6 and 8.0, and the temperature was between 30 and 35 °C. | [96] | |
Cupriavidus sp. CY-1 | Forest soil | 100% within 72 h | 500 mg/L | 28 °C | Strain was isolated from uncontaminated soil. | [97] | |
Achromobacter sp. LZ35 | Soil | 90% in 12 days | 50 mg/L | 30 °C, pH 8.0 | The first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. | [98] | |
Delftia sp. | A polluted river | 99.0% in 28 h | 200 mg/L | 28 °C | The ability of the strain to degrade and detoxify 2,4-D in synthetic wastewater across different aerobic reactors was assessed. | [99] | |
Rhodococcus ruber, Ochrobactrum anthropic, | WWTP | In about 2 mo | 100 mg/L | pH 7.0, 20 °C | The experiments identified Rhodococcus as the main genus biodegrading 2,4-D. | [100] | |
Cupriavidus pampae CPDB6T | An agricultural soil | 22% after 25 d | 350 mg/L | 30 °C | The strain was able to deamidate acetamide, which differentiated it from all other species of Cupriavidus. | [101] | |
Fungi | Penicillium sp. | Soil | 29.80% | 100 mg/L | 30 °C | ND | [102] |
Aspergillus penicilloides, Umbelopsis isabelina (Former Mortierella isabellina) | Soil and decayed wood and walnut | 52% and 46% after 5 d | 100 mg/L | pH 4.5 | Strain responses varied with the taxonomic groups and the chemicals tested. | [103] | |
Penicillium chrysogenum CLONA2 | Saltmine | ND | ND | pH 7.0 | Penicillium chrysogenum in solid medium was able to grow at concentrations of up to 1000 mg/L of 2,4-D with sucrose. | [104] | |
Mortierella sp. | Soil | 32% within 1 h | 250 μM | 25 °C | ND | [105] | |
Rigidoporus sp. FMD21, Fusarium sp. T1-BH.1, Verticillium sp. T1-BH.2 | Decayed wood Soil | ND | ND | pH 6.0, 30 °C | Laccase is important for the degradation of 2,4-D; CYPs are involved in the pathway of 2,4-D transformation by Rigidoporus sp. FMD21. | [106] | |
Penicillium sp. | Soil | ND | ND | 28 °C | The first report of a Penicillium strain possessing the capability to degrade 2,4-D. | [107] | |
Umbelopsis isabellina DSM1414 | Soil | 98% after 5 d | 25 mg/L | 28 °C | Enzymes responsible for 2,4-D degradation by this fungus include CYPs. | [108] | |
Trametes versicolor (L.:Fr.) Pilát Mo008 | Crescentia alata | 100% in 850 h | 1000 mg/L | pH 5.0, 25 °C | The strain presented activity of an enzymatic complex which was composed of laccase, LiP, and MnP. | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-F.; Chen, W.-J.; Song, H.; Liu, M.; Mishra, S.; Ghorab, M.A.; Chen, S.; Chang, C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules 2024, 29, 3869. https://doi.org/10.3390/molecules29163869
Chen S-F, Chen W-J, Song H, Liu M, Mishra S, Ghorab MA, Chen S, Chang C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules. 2024; 29(16):3869. https://doi.org/10.3390/molecules29163869
Chicago/Turabian StyleChen, Shao-Fang, Wen-Juan Chen, Haoran Song, Mingqiu Liu, Sandhya Mishra, Mohamed A. Ghorab, Shaohua Chen, and Changqing Chang. 2024. "Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities" Molecules 29, no. 16: 3869. https://doi.org/10.3390/molecules29163869
APA StyleChen, S. -F., Chen, W. -J., Song, H., Liu, M., Mishra, S., Ghorab, M. A., Chen, S., & Chang, C. (2024). Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules, 29(16), 3869. https://doi.org/10.3390/molecules29163869