Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction
Abstract
:1. Introduction
2. Possible Photothermal CO2 Hydrogenation Reaction Path
3. Photothermal CO2 Hydrogenation Applications of Ni-Based Catalysts
3.1. Photothermal Reverse Water–Gas Reaction
3.2. Photothermal CO2 Methanation
3.3. Photothermal CO2 Hydrogenation for Methanol Production
4. In Situ FT-IR Spectra Characterization
5. Future Perspectives and Summary
- (1)
- Currently, the main products of photothermal CO2 hydrogenation of Ni-based catalysts are CO, CH4 and CH3OH. With the deepening of research, it could be found that C2+ hydrocarbons are more valuable, but the current research progress and technical capabilities are not able to achieve this goal. In the explorations of some other classes of catalysts, related studies are gradually emerging. It can be observed that the main reaction process of C2+ hydrocarbon product production is the *CO-*CH2 pathway. *CO2 adsorbed on the catalyst surface forms *CO, which produces *CH2 by dissociation and hydrogenation of the C-O chemical bond. Then, *CH2 achieves C-C coupling under the action of a metal catalyst to obtain the generation of C2+ hydrocarbon products. Based on the above reaction path principle, Ni-based catalysts can be designed and explored to achieve the production of C2+ high-value-added hydrocarbons.
- (2)
- Recently reported in the journal Science, when the catalyst in the CO2 hydrogenation reaction has 100% selectivity for CO and does not waste hydrogen to produce by-product methane, the RWGS reaction can better achieve the overall carbon negative benefit and simplify the downstream separation process. Therefore, the CO selectivity of Ni-based catalysts in the photothermal RWGS reaction needs to be improved. It is necessary to further modify the Ni-based catalyst or regulate the reaction system. In addition, some design ideas of organic catalysts can also be used for reference, which could do with some experimentation [89,90].
- (3)
- The hydrogen spillover effect plays an important role in the photothermal CO2 hydrogenation reaction, but the current research mainly focuses on improving the catalytic activity by regulating the adsorption and activation capacities of CO2 and H2, and has neglected the hydrogen spillover effect. Therefore, in future studies, the mechanism of the hydrogen spillover effect should be explored in detail and applied for the improvement in the activity or selectivity of products.
- (4)
- Due to the strong exothermic reaction and the eight-electron reduction process required for CO2 methanation, achieving its thermodynamic and kinetic reaction is a great challenge. The temperature is too low, the CO2 methanation reaction speed is slow, the high temperature will change the reaction balance and the CO2 conversion rate is low, which do not meet the needs of actual production. At present, few Ni-based catalysts can simultaneously meet the four high production needs of high rate, high conversion, high selectivity and high stability. Therefore, exploring and researching suitable low-temperature catalysts to reduce the energy barrier of CO2 conversion, accelerate the methane generation rate at a lower or more appropriate temperature, and ensure high CO2 conversion, high selectivity, high stability and low cost has become a key issue in this field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Xu, C.P.; Zhang, X.J.; Huang, Z.Y.; Pian, Q.X.; Che, K.H.; Cui, X.K.; Hu, Y.R.; Xuan, Y.M. Structural Heredity in Catalysis: CO2 Self-Selective CeO2 Nanocrystals for Efficient Photothermal CO2 Hydrogenation to Methane. Small 2023, 20, 2308823. [Google Scholar] [CrossRef]
- Peng, Y.; Szalad, H.; Nikacevic, P.; Gorni, G.; Goberna, S.; Simonelli, L.; Albero, J.; López, N.; García, H. Co-doped hydroxyapatite as photothermal catalyst for selective CO2 hydrogenation. Appl. Catal. B Environ. 2023, 333, 122790. [Google Scholar] [CrossRef]
- Elavarasan, M.; Yang, W.; Velmurugan, S.; Chen, J.N.; Chang, Y.T.; Yang, T.C.K.; Yokoi, T. In-situ infrared investigation of m-TiO2/α-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. J. CO2 Util. 2022, 56, 101864. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; Garcia, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949–1962. [Google Scholar] [CrossRef]
- Yan, T.; Li, N.; Wang, L.; Ran, W.; Duchesne, P.N.; Wan, L.; Nguyen, T.N.; Wang, L.; Xia, M.; Ozin, G.A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat. Commun. 2020, 11, 6095. [Google Scholar] [CrossRef]
- Song, H.; Ye, J. Photothermal tandem catalysis for CO2 hydrogenation to methanol. Chem 2022, 8, 1181–1183. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Shi, R.; Waterhouse, G.I.N.; Wen, X.D.; Zhang, T. Fe-Based Catalysts for the Direct Photohydrogenation of CO2 to Value-Added Hydrocarbons. Adv. Energy Mater. 2021, 11, 2002783. [Google Scholar] [CrossRef]
- Deng, B.; Song, H.; Peng, K.; Li, Q.; Ye, J. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Appl. Catal. B Environ. 2021, 298, 120519. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Ma, J.; Yu, J.; Chen, G.; Bai, Y.; Liu, S.; Hu, Y.; Al-Mamun, M.; Wang, Y.; Gong, W.; Liu, D.; et al. Rational design of N-doped carbon-coated cobalt nanoparticles for highly efficient and durable photothermal CO2 conversion. Adv. Mater. 2023, 35, 2302537. [Google Scholar] [CrossRef]
- Gu, Y.; Ding, J.; Tong, X.; Yao, H.; Yang, R.; Zhong, Q. Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4. J. CO2 Util. 2022, 61, 102003. [Google Scholar] [CrossRef]
- Jin, B.; Ye, X.; Zhong, H.; Jin, F.; Hu, Y.H. Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst. Chin. Chem. Lett. 2022, 33, 812–816. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, J.; Liang, X.; Ouyang, S.; Mi, W.; Ning, S.; Zhao, L.; Ye, J. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation. Adv. Funct. Mater. 2021, 31, 2100908. [Google Scholar] [CrossRef]
- Fang, Y.L.; Zhu, G.H.; Jiang, J.Z.; Yang, L.; Deng, F.X.; Arramel; Li, X. A review of updated S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180. [Google Scholar]
- Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Ali, F.M.; Meira, D.M.; Duchesne, P.N.; Loh, J.Y.Y.; Qiu, C.; Storey, E.E.; et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11, 2432. [Google Scholar] [CrossRef]
- Ding, X.; Liu, W.X.; Zhao, J.H.; Wang, L.; Zou, Z.G. Photothermal CO2 Catalysis toward the Synthesis of Solar Fuel: From Material and Reactor Engineering to Techno-Economic Analysis. Adv. Mater. 2024, 23, 12093. [Google Scholar] [CrossRef]
- Belinchón, A.; Hernández, E.; Navarro, P.; Palomar, J. A step closer to sustainable CO2 conversion: Limonene carbonate production driven by ionic liquids. J. Clean. Prod. 2024, 460, 142587. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhang, X.H.; Sun, W.; Yang, D.R.; Duchesne, P.N.; Gao, Y.G.; Wang, Z.Y.; Yan, T.J.; Yuan, Z.M.; Yang, G.H.; et al. Building a Bridge from Papermaking to Solar Fuels. Angew. Chem. Int. Ed. 2019, 58, 14850–14854. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Zhu, X.L.; Gao, X.Q.; An, C.H.; Wang, Z.; Zuo, C.; Dionysiou, D.D.; He, H.; Jiang, Z.Y. Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environ. Sci. Ecotechnol. 2024, 20, 100368. [Google Scholar] [CrossRef] [PubMed]
- Price, C.A.H.; Reina, T.R.; Liu, J. Engineering heterogenous catalysts for chemical CO2 utilization: Lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors. J. Energy Chem. 2021, 57, 304–324. [Google Scholar] [CrossRef]
- Gao, J.J.; Shiong, S.C.S.; Liu, Y. Reduction of CO2 to chemicals and Fuels: Thermocatalysis versus electrocatalysis. Chem. Eng. J. 2023, 472, 145033. [Google Scholar] [CrossRef]
- Rao, Y.; Chibwe, K.; Mantilla-Calderon, D.; Ling, F.Q.; He, Z. Meta-analysis of biogas upgrading to renewable natural gas through biological CO2 conversion. J. Clean. Prod. 2023, 426, 139128. [Google Scholar] [CrossRef]
- Gao, W.; Li, Y.W.; Xiao, D.Q.; Ma, D. Advances in photothermal conversion of carbon dioxide to solar fuels. J. Energy Chem. 2023, 83, 62–78. [Google Scholar] [CrossRef]
- Wang, Z.J.; Song, H.; Liu, H.; Ye, J. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035. [Google Scholar] [CrossRef]
- Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew. Chem. Int. Ed. 2014, 53, 11478–11482. [Google Scholar] [CrossRef]
- Li, N.X.; Liu, M.; Yang, B.; Shu, W.X.; Shen, Q.H.; Liu, M.C.; Zhou, J.C. Enhanced Photocatalytic Performance toward CO2 Hydrogenation over Nanosized TiO2-Loaded Pd under UV Irradiation. J. Phys. Chem. C 2017, 121, 2923–2932. [Google Scholar] [CrossRef]
- Wu, D.D.; Deng, K.X.; Hu, B.; Lu, Q.Y.; Liu, G.L.; Hong, X.L. Plasmon-Assisted Photothermal Catalysis of Low-Pressure CO2 Hydrogenation to Methanol over Pd/ZnO Catalyst. ChemCatChem 2019, 11, 1598–1601. [Google Scholar] [CrossRef]
- Song, C.Q.; Wang, Z.H.; Zhao, J.W.; Qin, X.T.; Peng, M.; Gao, Z.R.; Xu, M.; Xu, Y.; Yan, J.; Bi, Y.P.; et al. Photothermal conversion of CO2 into lower olefins at the interface of the K-promoted Ru/Fe3O4 catalyst. Chem Catal. 2024, 4, 100960. [Google Scholar] [CrossRef]
- Deng, B.W.; Song, H.; Wang, Q.; Hong, J.N.; Song, S.; Zhang, Y.W.; Peng, K.; Zhang, H.W.; Kako, T.; Ye, J.H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. B Environ. 2023, 327, 122471. [Google Scholar] [CrossRef]
- Dong, T.J.; Liu, X.Y.; Tang, Z.F.; Yuan, H.F.; Jiang, D.; Wang, Y.J.; Liu, Z.; Zhang, X.L.; Huang, S.F.; Liu, H.; et al. Ru decorated TiOx nanoparticles via laser bombardment for photothermal co-catalytic CO2 hydrogenation to methane with high selectivity. Appl. Catal. B Environ. 2023, 326, 122176. [Google Scholar] [CrossRef]
- Li, J.L.; Sheng, B.W.; Qiu, L.; Yang, J.J.; Wang, P.; Li, Y.X.; Yu, T.Q.; Pan, H.; Li, Y.; Li, M.H.; et al. Photo-thermal synergistic CO2 hydrogenation towards CO over PtRh bimetal-decorated GaN nanowires/Si. Chem. Sci. 2024, 15, 7714–7724. [Google Scholar] [CrossRef]
- Zhai, J.; Xia, Z.; Zhou, B.; Wu, H.; Xue, T.; Chen, X.; Jiao, J.; Jia, S.; He, M.; Han, B. Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4. Nat. Commun. 2024, 15, 1109. [Google Scholar] [CrossRef]
- Guo, C.; Tang, Y.; Yang, Z.; Zhao, T.; Liu, J.; Zhao, Y.; Wang, F. Reinforcing the efficiency of photothermal catalytic CO2 methanation through integration of Ru nanoparticles with photothermal MnCo2O4 nanosheets. ACS Nano 2023, 17, 23761–23771. [Google Scholar] [CrossRef]
- Jia, J.; O’Brien, P.G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L.M.; Burrow, T.E.; Dong, Y.; Liao, K.; Varela, M.; et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Chang, K.; Zhao, Z.; Huang, J.; Kuang, Q. MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonic-induced Photothermal Catalysis of CO2 Hydrogenation. Chem. Eur. J. 2022, 28, e202104514. [Google Scholar] [CrossRef]
- Ge, H.; Kuwahara, Y.; Kusu, K.; Kobayashi, H.; Yamashita, H. Enhanced visible-NIR absorption and oxygen vacancy generation of Pt/HxMoWOy by H-spillover to facilitate photothermal catalytic CO2 hydrogenation. J. Mater. Chem. A 2022, 10, 10854–10864. [Google Scholar] [CrossRef]
- Gao, X.; Cao, L.; Chang, Y.; Yuan, Z.; Zhang, S.; Liu, S.; Zhang, M.; Fan, H.; Jiang, Z. Improving the CO2 hydrogenation activity of photocatalysts via the synergy between surface frustrated Lewis pairs and the CuPt alloy. ACS Sustain. Chem. Eng. 2023, 11, 5597–5607. [Google Scholar] [CrossRef]
- He, Z.H.; Li, Z.H.; Wang, Z.Y.; Wang, K.; Sun, Y.C.; Wang, S.W.; Wang, W.T.; Yang, Y.; Liu, Z.T. Photothermal CO2 hydrogenation to hydrocarbons over trimetallic Co-Cu-Mn catalysts. Green Chem. 2021, 23, 5775–5785. [Google Scholar] [CrossRef]
- Murthy, P.S.; Liang, W.B.; Jiang, Y.J.; Huang, J. Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol. Energy Fuels 2021, 35, 8558–8584. [Google Scholar] [CrossRef]
- Kho, E.T.; Tan, T.H.; Lovell, E.; Wong, R.J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217. [Google Scholar] [CrossRef]
- Lou, D.; Xu, A.B.; Fang, Y.; Cai, M.; Lv, K.; Zhang, D.; Wang, X.; Huang, Y.; Li, C.; He, L. Cobalt-Sputtered Anodic Aluminum Oxide Membrane for Efficient Photothermal CO2 Hydrogenation. ChemNanoMat 2021, 7, 1008–1012. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, T.; Han, H.; Yang, Z.; Liu, J.; Wen, X.; Wang, F. Ir-CoO Active Centers Supported on Porous Al2O3 Nanosheets as Efficient and Durable Photo-Thermal Catalysts for CO2 Conversion. Adv. Sci. 2023, 10, 2300122. [Google Scholar] [CrossRef]
- Chen, G.; Gao, R.; Zhao, Y.; Li, Z.; Waterhouse, G.I.; Shi, R.; Zhao, J.; Zhang, M.; Shang, L.; Sheng, G.; et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y.G.; Deng, Y.C.; Zhang, M.T.; Qin, X.T.; Feng, K.; Yan, J.; et al. Photothermal Conversion of CO2 with Tunable Selectivity Using Fe-Based Catalysts: From Oxide to Carbide. ACS Catal. 2020, 10, 10364–10374. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, H.W.; Hu, Y.; Yang, S.Y.; Xue, X.L.; He, L.F.; Liu, X.; Ma, J.; Jin, Z. Photodriven Catalytic Hydrogenation of CO2 to CH4 with Nearly 100% Selectivity over Ag25 Clusters. Nano Lett. 2021, 21, 8693–8700. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yuan, Z.; Duchesne, P.N.; Sun, W.; Lyu, X.; Miao, W.; Viasus Pérez, C.J.; Xu, Y.; Yang, D.; Huang, B.; et al. A living photocatalyst derived from CaCu3Ti4O12 for CO2 hydrogenation to methanol at atmospheric pressure. Chem. Catal. 2023, 3, 100507. [Google Scholar] [CrossRef]
- Xu, C.Y.; Huang, W.H.; Li, Z.; Deng, B.W.; Zhang, Y.W.; Ni, M.J.; Cen, K.F. Photothermal Coupling Factor Achieving CO2 Reduction Based on Palladium-Nanoparticle-Loaded TiO2. ACS Catal. 2018, 8, 6582–6593. [Google Scholar] [CrossRef]
- Li, N.X.; Zou, X.Y.; Liu, M.; Wei, L.F.; Shen, Q.H.; Bibi, R.; Xu, C.J.; Ma, Q.H.; Zhou, J.C. Enhanced Visible Light Photocatalytic Hydrogenation of CO2 into Methane over a Pd/Ce-TiO2 Nanocomposition. J. Phys. Chem. C 2017, 121, 25795–25804. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M. Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Ind. Eng. Chem. Res. 2021, 60, 13149–13179. [Google Scholar] [CrossRef]
- Zhou, J.; Liua, H.; Wang, H.Q. Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 2023, 34, 107420. [Google Scholar] [CrossRef]
- Lu, B.W.; Quan, F.J.; Sun, Z.; Jia, F.L.; Zhang, L.Z. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724. [Google Scholar] [CrossRef]
- Jiang, R.; Yue, X.; Wang, K.; Yang, Z.; Dai, W.; Fu, X. Photothermal-Catalyzing CO2 Methanation over Different-Shaped CeO2-Based Ru Nanoparticles. Energy Fuels 2022, 36, 11636–11646. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Doronkin, D.E.; Ye, Y.H.; Grunwaldt, J.D.; Huang, Z.A.; Zhou, Y. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst. Chin. J. Catal. 2020, 41, 286–293. [Google Scholar] [CrossRef]
- Liu, H.M.; Shi, L.Z.; Zhang, Q.J.; Qi, P.; Zhao, Y.H.; Meng, Q.R.; Feng, X.Q.; Wang, H.; Ye, J.H. Photothermal catalysts for hydrogenation reactions. Chem. Commun. 2021, 57, 1279–1294. [Google Scholar] [CrossRef]
- Li, Z.H.; Shi, R.; Ma, Y.N.; Zhao, J.Q.; Zhang, T.R. Photodriven CO2 Hydrogenation into Diverse Products: Recent Progress and Perspective. J. Phys. Chem. Lett. 2022, 13, 5291–5303. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, M.; Liang, Z.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; Zheng, Z.; Huang, B. Photo-enhanced CO2 hydrogenation by plasmonic Cu/ZnO at atmospheric pressure. J. Solid State Chem. 2021, 298, 122113. [Google Scholar] [CrossRef]
- He, J.H.; Lyu, P.; Jiang, B.; Chang, S.S.; Du, H.R.; Zhu, J.; Li, H.X. A novel amorphous alloy photocatalyst (NiB/In2O3) composite for sunlight-induced CO2 hydrogenation to HCOOH. Appl. Catal. B Environ. 2021, 298, 120603. [Google Scholar] [CrossRef]
- Lorber, K.; Djinovic, P. Accelerating photo-thermal CO2 reduction to CO, CH4 or methanol over metal/oxide semiconductor catalysts. iScience 2022, 25, 104107. [Google Scholar] [CrossRef]
- Lou, D.Y.; Zhu, Z.J.; Xu, Y.F.; Li, C.R.; Feng, K.; Zhang, D.K.; Lv, K.X.; Wu, Z.Y.; Zhang, C.C.; Ozin, G.A.; et al. A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Sci. China Mater. 2021, 64, 2212–2220. [Google Scholar] [CrossRef]
- Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O.F.; Gascon, J. Efficient Visible-Light Driven Photothermal Conversion of CO2 to Methane by Nickel Nanoparticles Supported on Barium Titanate. Adv. Funct. Mater. 2021, 31, 2008244. [Google Scholar] [CrossRef]
- Ding, X.; Liu, X.; Cheng, J.H.; Li, D.; Li, T.F.; Jiang, Z.; Guo, Y. Boosted photothermal synergistic CO2 methanation over Ru doped Ni/ZrO2 catalyst: From experimental to DFT studies. Fuel 2024, 357, 129779. [Google Scholar] [CrossRef]
- Wang, Z.M.; Xiao, M.Q.; Wang, X.X.; Wang, H.; Chen, X.; Dai, W.X.; Yu, Y.; Fu, X.Z. Thermo-driven photocatalytic CO2 hydrogenation over NiOx/Nb2O5 via regulating the electron transfer behavior of reactant gas adsorption. App. Surf. Sci. 2022, 592, 153246. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Hu, X.; An, X.D.; Xiao, M.D.; Zhang, L.; Li, C.R.; He, L. Photothermal Catalytic CO2 Hydrogenation with High Activity and Tailored Selectivity Over Monodispersed Pd-Ni Nanoalloys. Chem. Asian J. 2022, 17, e202200993. [Google Scholar] [CrossRef]
- Steeves, T.M.; Esser-Kahn, A.P. Demonstration of the photothermal catalysis of the Sabatier reaction using nickel nanoparticles and solar spectrum light. RSC Adv. 2021, 11, 8394. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.X.; Zhang, M.; Gao, H.; Chen, J.; Jia, H.P. Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2. Appl. Catal. B Environ. 2022, 303, 120905. [Google Scholar] [CrossRef]
- Li, J.R.; Xu, Q.; Han, Y.Y.; Guo, Z.Y.; Zhao, L.Q.; Cheng, K.; Zhang, Q.H.; Wang, Y. Efficient photothermal CO2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect. Sci. China Chem. 2023, 66, 3518–3524. [Google Scholar] [CrossRef]
- Kho, E.T.; Jantarang, S.; Zheng, Z.K.; Scott, J.; Amal, R. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation. Engineering 2017, 3, 393–401. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Z.J.; Zhang, Y.M.; Chen, Y.; Wang, W.J.; Xu, X.M.; Du, M.Y.; Li, Z.S.; Zou, Z.G. Deactivation and Stabilization Mechanism of Photothermal CO2 Hydrogenation over Black TiO2. ACS Sustain. Chem. Eng. 2022, 10, 6382–6388. [Google Scholar] [CrossRef]
- Lv, C.C.; Bai, X.H.; Ning, S.B.; Song, C.X.; Guan, Q.Q.; Liu, B.; Li, Y.G.; Ye, J.H. Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS Nano 2023, 17, 1725–1738. [Google Scholar] [CrossRef]
- Canales, R.; Agirre, I.; Barrio, V.L. Ni-Fe nanoparticles prepared using hydrotalcite precursors enhance the photocatalytic performance of CO2 methanation. Int. J. Hydrogen Energy 2024, 56, 1435–1445. [Google Scholar] [CrossRef]
- He, Y.L.; Zhou, Y.; Feng, J.; Xing, M.Y. Photothermal conversion of CO2 to fuel with nickel-based catalysts: A review. Environ. Funct. Mater. 2022, 1, 204–217. [Google Scholar] [CrossRef]
- Ghoussoub, M.; Xia, M.K.; Duchesne, P.D.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M. Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: A review. Chem. Eng. J. 2022, 427, 131617. [Google Scholar] [CrossRef]
- Zhao, S.H.; Li, C.H.; Ren, K.K.; Fang, Z.B.; Fang, P.; Zhu, Y.Y.; Fang, P.F. Ternary Ni-Co-Fe oxides based on Prussian blue analog for efficient photothermal catalytic CO2 reduction to CO and CH4. Appl. Catal. A Gen. 2023, 655, 119109. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.H.; Qi, M.Y.; Yamada, Y.M.A.; Anpo, M.; Tang, Z.R.; Xu, Y.J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297. [Google Scholar] [CrossRef]
- Kattel, S.; Liu, P.; Chen, J.G.G. Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. J. Am. Chem. Soc. 2017, 139, 9739–9754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Hu, S.; Zhang, F.Y.; Xing, S.C.; Hu, H.L.; Ye, J.H.; Wang, D.F. Tunable Selectivity of Photothermal CO2 Reduction over Composition-Mediated Ni-Mo Alloy Catalysts. Energy Technol. 2024, 2301505. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.Q.; Wang, H.L.; Chen, J.; Chen, J.; Jia, H.P. Disclosing Support-Size-Dependent Effect on Ambient Light-Driven Photothermal CO2 Hydrogenation over Nickel/Titanium Dioxide. Angew. Chem. Int. Ed. 2024, 63, e202318166. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Zong, H.B.; Pérez, C.J.V.; Miao, H.H.; Sun, W.; Yuan, Z.M.; Wang, S.H.; Zeng, G.X.; Xu, H.; Jiang, Z.Y.; et al. Supercharged CO2 Photothermal catalytic Methanation: High Conversion, Rate, and Selectivity. Angew. Chem. Int. Ed. 2023, 62, e202218694. [Google Scholar] [CrossRef]
- Yang, G.X.; Wang, Q.; Kuwahara, Y.; Mori, K.; Yamashita, H. Recent Progress of Studies on Photoconversion and Photothermal Conversion of CO2 with Single-Atom Catalysts. Chem. Bio Eng. 2024, 1, 289–311. [Google Scholar] [CrossRef]
- Singh, S.; Verma, R.; Kaul, N.; Sa, J.; Punjal, A.; Prabhu, S.; Polshettiwar, V. Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets. Nat. Commun. 2023, 14, 2551. [Google Scholar] [CrossRef] [PubMed]
- Song, X.X.; Gao, L.J.; Wu, M.Q.; Yuan, D.C.; Kang, X.X.; Lian, R.Q.; San, X.Y.; Li, Y.G. Atomically dispersed Ni catalyst to boost weak sunlight-driven CO2 hydrogenation with 100% CO selectivity. App. Surf. Sci. 2023, 609, 155339. [Google Scholar] [CrossRef]
- Jia, Z.W.; Ning, S.B.; Tong, Y.X.; Chen, X.; Hu, H.L.; Liu, L.Q.; Ye, J.H.; Wang, D.F. Selective Photothermal Reduction of CO2 to CO over Ni-Nanoparticle/N-Doped CeO2 Nanocomposite Catalysts. ACS Appl. Nano Mater. 2021, 4, 10485–10494. [Google Scholar] [CrossRef]
- Zhao, T.T.; Yang, Z.Y.; Tang, Y.X.; Liu, J.R.; Wang, F.L. Advances and Perspectives of Photopromoted CO2 Hydrogenation for Methane Production: Catalyst Development and Mechanism Investigations. Energy Fuels 2022, 36, 6711–6735. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Xie, B.Q.; Yuwono, J.A.; Kumar, P.; Sharma, A.S.; Nielsen, M.P.; Bendavid, A.; Amal, R.; Scott, J.; Lovell, E.C. Making light work: Designing plasmonic structures for the selective photothermal methanation of carbon dioxide. EES Catal. 2024, 2, 834–849. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M.; Alias, H. Visible light promoted low temperature photothermal CO2 methanation over morphologically engineered Ni/TiO2 NWs catalyst. Mater. Today Proc. 2024, 97, 9–16. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.L.; Xiao, Z.R.; Zhang, H.; Ye, F.; Gu, J.M.; Wang, J.D.; Li, G.Z.; Wang, D.S. Ni-TiO2 catalysts derived from metal-organic framework for efficient photo-thermal CO2 methanation. Fuel 2024, 357, 129817. [Google Scholar] [CrossRef]
- Zhang, G.L.; Xu, Q.; Huang, H.; Zhou, F.; Yu, L.Y.; Chen, Q.; Yang, J.R.; Xiao, Y.L.; Zhang, Q. Ni-Doped In2O3 Photothermal Coupling Catalyzed Boosted Carbon Dioxide Hydrogenation to Methanol. Ind. Eng. Chem. Res. 2024, 63, 968–979. [Google Scholar] [CrossRef]
- Liu, M.; Chen, G.; Song, Z.; He, Z.; Zhong, A.; Cui, M. Catalytic Dechlorination of Three Organochlorides by Recyclable Nano-Palladium-Engineered Natural Sponge with Formic Acid. Catalysts 2024, 14, 424. [Google Scholar] [CrossRef]
- Ye, D.; Liu, L.; Peng, Q.; Qiu, J.; Gong, H.; Zhong, A.; Liu, S. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023, 28, 4507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Sun, X.; Wang, H.; Zhao, X.; Jiang, Z. Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction. Molecules 2024, 29, 3882. https://doi.org/10.3390/molecules29163882
Yuan Z, Sun X, Wang H, Zhao X, Jiang Z. Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction. Molecules. 2024; 29(16):3882. https://doi.org/10.3390/molecules29163882
Chicago/Turabian StyleYuan, Zhimin, Xianhui Sun, Haiquan Wang, Xingling Zhao, and Zaiyong Jiang. 2024. "Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction" Molecules 29, no. 16: 3882. https://doi.org/10.3390/molecules29163882
APA StyleYuan, Z., Sun, X., Wang, H., Zhao, X., & Jiang, Z. (2024). Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction. Molecules, 29(16), 3882. https://doi.org/10.3390/molecules29163882