Ionic Liquid—Solidified Floating Organic Drop Microextraction for the Preconcentration of Lead in Environmental Water Samples Prior to Its Determination with Electrothermal Atomic Absorption Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of IL-SFODME Method
2.1.1. Selection of Extraction Solvent
2.1.2. Optimization of pH
2.1.3. Optimization of Buffer Amount
2.1.4. Optimization of Ionic Liquid Amount
2.1.5. Optimization of Extraction Time
2.1.6. Optimization of Extraction Temperature
2.1.7. Optimization of Extraction Speed
2.1.8. Optimization of Added Dodecanol Amount
2.1.9. Optimization of Final Volume
2.2. Interference Studies
2.3. Analytical Performance of Proposed Method
2.4. Accuracy of the Method
2.5. Analysis of Real Samples
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Procedure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buzea, C.; Pacheco, I. Heavy Metals: Definition, Toxicity, and Uptake in Plants. In Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences; Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Chalkidis, A.; Jampaiah, D.; Aryana, A.; Wood, C.D.; Hartley, P.G.; Sabri, Y.M.; Bhargava, S.K. Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal. J. Environ. Manag. 2020, 270, 110945. [Google Scholar] [CrossRef]
- Orecchio, S.; Amorello, D.; Barreca, S.; Pettignano, A. Speciation of vanadium in urban, industrial and volcanic soils by a modified Tessier method. Environ. Sci. Process. Impacts 2016, 18, 323–329. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Gulli, E.; Orecchio, S. Platinum and rhodium in wine samples by using voltammetric techniques. Microchem. J. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Sharma, N.; Sodhi, K.K.; Kumar, M.; Singh, D.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100388. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef]
- Karaman, D.N.; Serbest, H.; Bahçivan, A.; Korkunç, P.; Bakirdere, S. Development of an analytical strategy for the determination of trace lead in hibiscus tea extract by double slotted quartz tube assisted flame atomic absorption spectrometry after manganese ferrite based dispersive solid phase extraction. Microchem. J. 2023, 195, 109360. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E.; Imborvungu, J.A. Removal of heavy metals from a contaminated soil using organic chelating acids. Int. J. Environ. Sci. Technol. 2010, 7, 485–496. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Ren, G.; Jin, Y.; Zhang, C.; Gu, H.; Qu, J. Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicol. Environ. Saf. 2015, 117, 141–148. [Google Scholar] [CrossRef]
- Tabaraki, R.; Nateghi, A.; Ahmady-Asbchin, S. Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. Int. Biodeterior. Biodegrad. 2014, 93, 145–152. [Google Scholar] [CrossRef]
- Li, L.; Sun, F.; Liu, Q.; Zhao, X.; Song, K. Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China. Ecotoxicol. Environ. Saf. 2021, 222, 112479. [Google Scholar] [CrossRef]
- World Health Organization. Exposure to Lead: A Major Public Health Concern. Preventing Disease through Healthy Environments; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/9789240037632 (accessed on 29 July 2024).
- U.S. Environmental Protection Agency. Lead in Drinking Water Regulation Public Education Guidance; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Sun, F.; Mu, Y.; Leung, K.M.; Su, H.; Wu, F.; Chang, H. China is establishing its water quality standards for enhancing protection of aquatic life in freshwater ecosystems. Environ. Sci. Policy 2021, 124, 413–422. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Behbahani, M. A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: Synthesis, characterization and analytical application. Arab. J. Chem. 2017, 10, S2499–S2508. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. J. Environ. Sci. 2016, 45, 143–155. [Google Scholar] [CrossRef]
- Mizuguchi, H.; Ishida, M.; Takahashi, T.; Sasaki, A.; Shida, J. Ultra-trace determination of lead (ii) in water using electrothermal atomic absorption spectrometry after preconcentration by solid-phase extraction to a small piece of cellulose acetate type membrane filter. Anal. Sci. 2011, 27, 85–89. [Google Scholar] [CrossRef]
- Juwadee, S.; Benyatian, K.; Siripinyanond, A. Determination of Cd, Co, Hg, and Ni in seawater after enrichment on activated carbon by slurry sampling electrothermal AAS. At. Spectrosc. 2000, 21, 179–186. [Google Scholar]
- Silva, E.d.S.; Correia, L.O.; dos Santos, L.O.; Vieira, E.V.d.S.; Lemos, V.A. Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry. Microchim. Acta 2012, 178, 269–275. [Google Scholar] [CrossRef]
- Zhao, L.; Zhong, S.; Fang, K.; Qian, Z.; Chen, J. Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2012, 239, 206–212. [Google Scholar] [CrossRef]
- Kragović, M.; Daković, A.; Sekulić, Ž.; Trgo, M.; Ugrina, M.; Perić, J.; Gatta, G.D. Removal of lead from aqueous solutions by using the natural and Fe (III)-modified zeolite. Appl. Surf. Sci. 2012, 258, 3667–3673. [Google Scholar] [CrossRef]
- Bahadır, Z.; Bulut, V.N.; Ozdes, D.; Duran, C.; Bektas, H.; Soylak, M. Separation and preconcentration of lead, chromium and copper by using with the combination coprecipitation-flame atomic absorption spectrometric determination. J. Ind. Eng. Chem. 2014, 20, 1030–1034. [Google Scholar] [CrossRef]
- Saxena, R.; Sharma, N.; Tiwari, S. Chromium speciation using flow-injection preconcentration on xylenol orange functionalized Amberlite XAD-16 and determination in industrial water samples by flame atomic absorption spectrometry. Anal. Sci. 2015, 31, 1303–1308. [Google Scholar] [CrossRef]
- Hussein, A.R.; Gburi, M.S.; Muslim, N.M.; Azooz, E.A. A greenness evaluation and environmental aspects of solidified floating organic drop microextraction for metals: A review. Trends Environ. Anal. Chem. 2023, 37, e00194. [Google Scholar] [CrossRef]
- Li, X.; Azimzadeh, B.; Martinez, C.E.; McBride, M.B. Pb mineral precipitation in solutions of sulfate, carbonate and phosphate: Measured and modeled Pb solubility and Pb2+ activity. Minerals 2021, 11, 620. [Google Scholar] [CrossRef]
- Soylak, M.; Narin, I.; Bezerra, M.d.A.; Ferreira, S.L.C. Factorial design in the optimization of preconcentration procedure for lead determination by FAAS. Talanta 2005, 65, 895–899. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Shiraz, A.Z. On-line separation and preconcentration of lead (II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry. J. Hazard. Mater. 2008, 150, 554–559. [Google Scholar] [CrossRef]
- Habila, M.; Alothman, Z.; Yilmaz, E.; Alabdullkarem, E.; Soylak, M. A new amine based microextraction of lead (II) in real water samples using flame atomic absorption spectrometry. Microchem. J. 2019, 148, 214–219. [Google Scholar] [CrossRef]
- Kazi, T.G.; Afridi, H.I.; Bhatti, M.; Akhtar, A. A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: A multivariate study. Ultrason. Sonochemistry 2019, 51, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Habibiyan, A.; Ezoddin, M.; Lamei, N.; Abdi, K.; Amini, M.; Ghazi-Khansari, M. Ultrasonic assisted switchable solvent based on liquid phase microextraction combined with micro sample injection flame atomic absorption spectrometry for determination of some heavy metals in water, urine and tea infusion samples. J. Mol. Liq. 2017, 242, 492–496. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, S.; Wu, X.; Fang, K.; Liu, W. Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 2005, 67, 992–996. [Google Scholar] [CrossRef]
- Liang, P.; Sang, H. Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Anal. Biochem. 2008, 380, 21–25. [Google Scholar] [CrossRef]
- Maltez, H.F.; Borges, D.L.; Carasek, E.; Welz, B.; Curtius, A.J. Single drop micro-extraction with O, O-diethyl dithiophosphate for the determination of lead by electrothermal atomic absorption spectrometry. Talanta 2008, 74, 800–805. [Google Scholar] [CrossRef]
- Martínez, D.; Grindlay, G.; Gras, L.; Mora, J. Determination of cadmium and lead in wine samples by means of dispersive liquid–liquid microextraction coupled to electrothermal atomic absorption spectrometry. J. Food Compos. Anal. 2018, 67, 178–183. [Google Scholar] [CrossRef]
- Wang, J.; Hansen, E.H. FI/SI on-line solvent extraction/back extraction preconcentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead. J. Anal. At. Spectrom. 2002, 17, 1284–1289. [Google Scholar] [CrossRef]
Organic Solvent | Melting Point (°C) | Extraction Efficiency of Pb (%) |
---|---|---|
1-dodecanol | 21–24 | 98.1 |
2-dodecanol | 17–18 | 97.2 |
1-undecanol | 16 | 96.5 |
1-bromohexadecane | 17–18 | 97.1 |
n-hexadecane | 18 | 95.8 |
1,10-diclorodecane | 14–16 | 96.2 |
Ion | [Pb(II)]/[Ion] | Added As | Ion | [Pb(II)]/[Ion] | Added As |
---|---|---|---|---|---|
K+ | >1/5000 | KCl | Al3+ | >1/500 | Al(NO3)3 |
Na+ | >1/5000 | NaCl | Fe3+ | 1/300 | Fe(NO3)3 |
Zn2+ | 1/500 | Zn(NO3)2 | Cr3+ | >1/75 | Cr(NO3)3 |
Ca2+ | >1/400 | CaCO3 | Co2+ | 1/1000 | Co(NO3)2 |
Cd2+ | 1/500 | Cd(NO3)2 | Se3+ | 1/2000 | Na2SeO4 |
Hg2+ | >1/50 | HgCl2 | SCN− | 1/2000 | NH4SCN |
Mn2+ | >1/2000 | Mn(NO3)2 | Cl− | >1/5000 | NaCl |
Ni2+ | 1/500 | Ni(NO3)2 | CO32− | 1/500 | Na2(CO3) |
Mg2+ | 1/300 | MgSO4 | SO42− | 1/5000 | MgSO4 |
Cu2+ | >1/200 | Cu(NO3)2 | CH3COO− | 1/2000 | CH3COONa |
Regression Equation | A = xC + y | 0.2135C + 0.0003 |
---|---|---|
Correlation Coefficient | 0.9983 | |
Enhancement Factor | 71.2 | |
Linear Range | µg/L | 0.2–2.5 |
Linear Range without enrichment | µg/L | 15–125 |
LOD | 3s (µg/L) | 0.054 |
LOQ | 10s (µg/L) | 0.18 |
Precision | RSD (%) [0.5 µg/L] n = 7 | 2.30 |
Sample | Certified (μg/L) | Found (μg/L) | Recovery % |
---|---|---|---|
NRC-AQUA-1 Drinking Water | 1.37 ± 0.09 | 1.39 ± 0.12 | 101.1 |
Tap Water (Beytepe—Ankara) | Seawater (Marmara Sea—Istanbul) | Wastewater (Big Scale WWTP—Ankara) | ||||||
---|---|---|---|---|---|---|---|---|
Added (μg/L) | Found (μg/L) | Efficiency (%) | Added (μg/L) | Found (μg/L) | Efficiency (%) | Added (μg/L) | Found (μg/L) | Efficiency (%) |
* BDL | - | * BDL | - | * BDL | - | |||
1.00 | 1.01 | 101.0 | 1.00 | 0.98 | 98.0 | 1.00 | 1.03 | 103.0 |
2.00 | 2.03 | 101.5 | 2.00 | 1.99 | 99.5 | 2.00 | 2.05 | 102.5 |
Stage | Temperature (°C) | Ramp Time (s) | Hold Time (s) | Gas Flow (mL/min) |
---|---|---|---|---|
Drying 1 | 110 | 1 | 20 | 250 |
Drying 2 | 130 | 15 | 20 | 250 |
Pyrolysis | 1000 | 10 | 10 | 250 |
Atomization a | 1500 | 0 | 3 | 0 |
Clean-Out | 1800/2450 b | 1 | 3 | 250 |
Preconcentration Method | Instrument | Enhancement Factor | Limit of Detection (µg/L) | Reference |
---|---|---|---|---|
SPE | FAAS | 20 | 3.7 | [29] |
SPE | FAAS | 200 | 0.4 | [30] |
DLLME | FAAS | 70 | 2.6 | [31] |
UAµE-DES | FAAS | 71.6 | 0.66 | [32] |
UA-SS-LPME | FAAS | 101.6 | 0.63 | [33] |
CPE | ETAAS | 50 | 0.08 | [34] |
DLLME | ETAAS | 78 | 0.039 | [35] |
LPME | ETAAS | 52 | 0.2 | [36] |
DLLME | ETAAS | - | 0.08 | [37] |
LLE | ICP-MS | 23.3 | 0.011 | [38] |
IL-SFODME | ETAAS | 69.2 | 0.075 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durukan, İ.; Yildiz, B. Ionic Liquid—Solidified Floating Organic Drop Microextraction for the Preconcentration of Lead in Environmental Water Samples Prior to Its Determination with Electrothermal Atomic Absorption Spectrometry. Molecules 2024, 29, 4189. https://doi.org/10.3390/molecules29174189
Durukan İ, Yildiz B. Ionic Liquid—Solidified Floating Organic Drop Microextraction for the Preconcentration of Lead in Environmental Water Samples Prior to Its Determination with Electrothermal Atomic Absorption Spectrometry. Molecules. 2024; 29(17):4189. https://doi.org/10.3390/molecules29174189
Chicago/Turabian StyleDurukan, İlknur, and Barış Yildiz. 2024. "Ionic Liquid—Solidified Floating Organic Drop Microextraction for the Preconcentration of Lead in Environmental Water Samples Prior to Its Determination with Electrothermal Atomic Absorption Spectrometry" Molecules 29, no. 17: 4189. https://doi.org/10.3390/molecules29174189
APA StyleDurukan, İ., & Yildiz, B. (2024). Ionic Liquid—Solidified Floating Organic Drop Microextraction for the Preconcentration of Lead in Environmental Water Samples Prior to Its Determination with Electrothermal Atomic Absorption Spectrometry. Molecules, 29(17), 4189. https://doi.org/10.3390/molecules29174189