Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain
Abstract
:1. Introduction
2. Results and Discussion
2.1. Virtual High Throughput Screening
2.1.1. Development of an SBDD Screening Workflow
2.1.2. Construction of the Working Chemical Space
2.1.3. Virtual Screening on
2.1.4. Virtual Screening on R2
2.1.5. Virtual Screening on
2.1.6. Combinatorial Screening of Favored , and with Inclusion of Selected WH
2.2. Synthesis of Selected Candidates and Biological Evaluation against CZP
2.3. Structure–Activity Relationships (SAR)
2.4. Selectivity Assays: Screening against hCatL
2.5. Anti T. cruzi Bioactivity
3. Materials and Methods
3.1. Computer-Aided Studies
3.1.1. Construction of Chemical Libraries
3.1.2. CZP Three-Dimensional Structure
3.1.3. Molecular Docking
3.1.4. MM-MD and Free Energy Analysis
3.1.5. Molecular Visualization
3.1.6. Computational Infrastructure
3.2. Synthetic Procedures
3.2.1. Chemistry
3.2.2. Azides (Az)
3.2.3. CuAAC
3.2.4. Aldehydes
3.3. Biological Assays
3.3.1. Screening against CZP
3.3.2. CatL Screening
3.3.3. T. cruzi Inhibition Assay
3.3.4. Cytotoxicity Assay
3.3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ald | aldehyde |
BDX | 1,3-benzodioxole |
CD | Chagas disease |
CP | Cysteine proteases |
CZP | Cruzipain |
Es | ester |
hCatL | human cathepsin L |
TCI | Targeted covalent inhibitors |
THQ | 1,2,3,4-tetrahydroisoquinoline |
vHTS | virtual high throughput screening |
WH | warhead |
4FPMK | tetrafluorophenoxymethyl ketone |
References
- World Health Organization. Chagas Disease. Available online: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed on 8 August 2023).
- World Health Organization. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation; Technical report; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Sustainability Framework for Action Against Neglected Tropical Diseases 2021–2030; Technical report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Hochberg, N.S.; Montgomery, S.P. Chagas Disease. Ann. Intern. Med. 2023, 176, ITC17–ITC32. [Google Scholar] [CrossRef]
- Morillo, C.; Marin-Neto, J.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N. Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Pathak, S.; Bhardwaj, M.; Agrawal, N.; Bhardwaj, A. A comprehensive review on potential candidates for the treatment of chagas disease. Chem. Biol. Drug Des. 2023, 102, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Cazzulo, J.J. Proteinases of Trypanosoma cruzi: Potential targets for the chemotherapy of Chagas disease. Curr. Top. Med. Chem. 2002, 2, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Cazzulo, J.; Stoka, V.; Turk, V. Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Biol. Chem. Hoppe Seyler 1997, 378, 1–10. [Google Scholar]
- Del Nery, E.; Juliano, M.; Meldal, M.; Svendsen, I.; Scharfstein, J.; Walmsley, A.; Juliano, L. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. Biochem. J. 1997, 323, 427–433. [Google Scholar] [CrossRef]
- Hayes, D.M.; Kollman, P.A. A Comparison of the Energetics of Proton Transfer in the Serine and Cysteine “Charge Relay” Systems and the Role of the Protein Electrostatic Potential on the Proton Transfer Energetics. In Proceedings of the Catalysis in Chemistry and Biochemistry Theory and Experiment: Proceedings of the Twelfth Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, 2–4 April 1979; Springer: Berlin/Heidelberg, Germany, 1979; pp. 77–90. [Google Scholar]
- Duschak, V.G.; Couto, A.S. Cruzipain, the major cysteine protease of Trypanosoma cruzi: A sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr. Med. Chem. 2009, 16, 3174–3202. [Google Scholar] [CrossRef]
- Cazzulo, J.; Couso, R.; Raimondi, A.; Wernstedt, C.; Hellman, U. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol. Biochem. Parasitol. 1989, 33, 33–41. [Google Scholar] [CrossRef]
- Judice, W.; Cezari, M.; Lima, A.; Scharfstein, J.; Chagas, J.; Tersariol, I.; Juliano, M.; Juliano, L. Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi. Eur. J. Biochem. 2001, 268, 6578–6586. [Google Scholar] [CrossRef]
- Robinson, M.W.; Dalton, J.P. Cysteine Proteases of Pathogenic Organisms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 712, ISBN 978-1489979421. [Google Scholar]
- Choe, Y.; Brinen, L.; Price, M.; Engel, J.; Lange, M.; Grisostomi, C.; Weston, S.; Pallai, P.; Cheng, H.; Hardy, L.; et al. Development of α-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorganic Med. Chem. 2005, 13, 2141–2156. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, C.; Isabel, E.; Fortier, A.; Massé, F.; Mellon, C.; Méthot, N.; Ndao, M.; Nicoll-Griffith, D.; Lee, D.; Park, H.; et al. Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease. Bioorganic Med. Chem. Lett. 2010, 20, 7444–7449. [Google Scholar] [CrossRef]
- Nicoll-Griffith, D.A. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease. Expert Opin. Drug Discov. 2012, 7, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Kerr, I.; Debnath, M.; Ang, K.; Ratnam, J.; Ferreira, R.; Jaishankar, P.; Zhao, D.; Arkin, M.; McKerrow, J.; et al. Novel non-peptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. Bioorganic Med. Chem. Lett. 2009, 19, 6218–6221. [Google Scholar] [CrossRef]
- Santos, V.C.; Ferreira, R.S. Computational approaches towards the discovery and optimisation of cruzain inhibitors. Memórias Inst. Oswaldo Cruz 2022, 117, e210385. [Google Scholar] [CrossRef]
- Santos, V.; Oliveira, A.; Campos, A.; Reis-Cunha, J.; Bartholomeu, D.; Teixeira, S.; Lima, A.; Ferreira, R. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci. Rep. 2021, 11, 18231. [Google Scholar] [CrossRef] [PubMed]
- Research Collaboratory for Structural Bioinformatics (RCSB). RCSB PDB-3IUT: Crystal Structure of Cruzipain in Complex with a Vinyl Sulfone Inhibitor. Available online: https://www.rcsb.org/structure/3IUT (accessed on 28 August 2021).
- Pauli, I.; Rezende, C., Jr.; Slafer, B.; Dessoy, M.; de Souza, M.; Ferreira, L.; Adjanohun, A.; Ferreira, R.; Magalhães, L.; Krogh, R.; et al. Multiparameter Optimization of Trypanocidal Cruzain Inhibitors With In Vivo Activity and Favorable Pharmacokinetics. Front. Pharmacol. 2022, 12, 774069. [Google Scholar] [CrossRef]
- Ferreira, R.; Dessoy, M.; Pauli, I.; Souza, M.; Krogh, R.; Sales, A.; Oliva, G.; Dias, L.; Andricopulo, A. Synthesis, biological evaluation, and structure–activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem. 2014, 57, 2380–2392. [Google Scholar] [CrossRef]
- Ferreira, R.; Pauli, I.; Sampaio, T.; de Souza, M.; Ferreira, L.; Magalhaes, L.; Rezende, C., Jr.; Ferreira, R.; Krogh, R.; Dias, L.; et al. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-Trypanosoma cruzi activity. Front. Chem. 2019, 7, 798. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.; Souza, H.; Leme, R.; Castelo-Branco, F.; Fernandes, T.; Boechat, N.; Dias, L.; Hoelz, L. Study of the dynamic behavior of the cruzain enzyme in free and complexed forms with competitive and noncovalent benzimidazole inhibitors. J. Biomol. Struct. Dyn. 2023, 41, 4368–4382. [Google Scholar] [CrossRef]
- Li, L.; Chenna, B.; Yang, K.; Cole, T.; Goodall, Z.; Giardini, M.; Moghadamchargari, Z.; Hernandez, E.; Gomez, J.; Calvet, C.; et al. Self-masked aldehyde inhibitors: A novel strategy for inhibiting cysteine proteases. J. Med. Chem. 2021, 64, 11267–11287. [Google Scholar] [CrossRef] [PubMed]
- Ndao, M.; Beaulieu, C.; Black, W.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother. 2014, 58, 1167–1178. [Google Scholar] [CrossRef]
- Fonseca, N.; da Cruz, L.; da Silva Villela, F.; do Nascimento Pereira, G.; de Siqueira-Neto, J.; Kellar, D.; Suzuki, B.; Ray, D.; de Souza, T.; Alves, R.; et al. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother. 2015, 59, 2666–2677. [Google Scholar] [CrossRef]
- Du, X.; Guo, C.; Hansell, E.; Doyle, P.; Caffrey, C.; Holler, T.; McKerrow, J.; Cohen, F. Synthesis and structure-activity relationship study of potent trypanocidal thiosemicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem. 2002, 45, 2695–2707. [Google Scholar] [CrossRef] [PubMed]
- Chipeleme, A.; Gut, J.; Rosenthal, P.; Chibale, K. Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio) semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorganic Med. Chem. 2007, 15, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Doyle, P.; Hsieh, I.; McKerrow, J. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J. Exp. Med. 1998, 188, 725–734. [Google Scholar] [CrossRef]
- McKerrow, J.; Doyle, P.; Engel, J.; Podust, L.; Robertson, S.; Ferreira, R.; Saxton, T.; Arkin, M.; Kerr, I.; Brinen, L.; et al. Two approaches to discovering and developing new drugs for Chagas disease. Memórias Inst. Oswaldo Cruz 2009, 104, 263–269. [Google Scholar] [CrossRef]
- Kerr, I.; Lee, J.; Farady, C.; Marion, R.; Rickert, M.; Sajid, M.; Pandey, K.; Caffrey, C.; Legac, J.; Hansell, E.; et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem. 2009, 284, 25697–25703. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Cianni, L.; Araujo, D.; Batista, P.; de Vita, D.; Rosini, F.; Leitão, A.; Lameira, J.; Montanari, C. Assessment of the cruzain cysteine protease reversible and irreversible covalent inhibition mechanism. J. Chem. Inf. Model. 2020, 60, 1666–1677. [Google Scholar] [CrossRef]
- Lonsdale, R.; Ward, R.A. Structure-based design of targeted covalent inhibitors. Chem. Soc. Rev. 2018, 47, 3816–3830. [Google Scholar] [CrossRef]
- Singh, J. The ascension of targeted covalent inhibitors. J. Med. Chem. 2022, 65, 5886–5901. [Google Scholar] [CrossRef] [PubMed]
- Baillie, T.A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. 2016, 55, 13408–13421. [Google Scholar] [CrossRef]
- Gehringer, M.; Laufer, S.A. Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. J. Med. Chem. 2018, 62, 5673–5724. [Google Scholar] [CrossRef]
- Lameiro, R.F.; Montanari, C.A. Investigating the lack of translation from cruzain inhibition to Trypanosoma cruzi activity with machine learning and chemical space analyses. ChemMedChem 2023, 18, e202200434. [Google Scholar] [CrossRef]
- Craik, D.; Fairlie, D.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Hamman, J.; Enslin, G.; Kotzé, A. Oral delivery of peptide drugs: Barriers and developments. BioDrugs 2005, 19, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; ElSayed, M.E. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin. Drug Deliv. 2022, 19, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Brak, K.; Doyle, P.; McKerrow, J.; Ellman, J. Identification of a new class of nonpeptidic inhibitors of cruzain. J. Am. Chem. Soc. 2008, 130, 6404–6410. [Google Scholar] [CrossRef] [PubMed]
- Brak, K.; Kerr, I.; Barrett, K.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.; McKerrow, J.; Doyle, P.; Brinen, L.; et al. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem. 2010, 53, 1763–1773. [Google Scholar] [CrossRef]
- Neitz, R.; Bryant, C.; Chen, S.; Gut, J.; Caselli, E.; Ponce, S.; Chowdhury, S.; Xu, H.; Arkin, M.; Ellman, J.; et al. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas’ disease. Bioorganic Med. Chem. Lett. 2015, 25, 4834–4837. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolare Cycloadditionen Rückschau und Ausblick. Angew. Chem. 1963, 75, 604–637. [Google Scholar] [CrossRef]
- Huisgen, R. Kinetik und Mechanismus 1,3-Dipolarer Cycloadditionen. Angew. Chem. 1963, 75, 742–754. [Google Scholar] [CrossRef]
- Agalave, S.; Maujan, S.; Pore, V. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef] [PubMed]
- Rostovtsev, V.; Green, L.; Fokin, V.; Sharpless, K. A stepwise huisgen cycloaddition process: Copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. 2002, 114, 2708–2711. [Google Scholar] [CrossRef]
- Tornøe, C.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Potter, G.; Jayson, G.; Miller, G.; Gardiner, J. An updated synthesis of the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate. J. Org. Chem. 2016, 81, 3443–3446. [Google Scholar] [CrossRef]
- Goddard-Borger, E.D.; Stick, R.V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 2007, 9, 3797–3800. [Google Scholar] [CrossRef]
- v. Wachenfeldt, H.; Paulsen, F.; Sundin, A.; Strand, D. Synthesis of Substituted Oxazoles from N-Benzyl Propargyl Amines and Acid Chlorides. Eur. J. Org. Chem. 2013, 2013, 4578–4585. [Google Scholar] [CrossRef]
- Ermolat’ev, D.; Feng, H.; Song, G.; Van der Eycken, E. Copper (I)-Catalyzed Decarboxylative Coupling of Propiolic Acids with Secondary Amines and Aldehydes. Eur. J. Org. Chem. 2014, 2014, 5346–5350. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Vessally, E. Decarboxylative A3-coupling reactions: An overview. J. Chin. Chem. Soc. 2021, 68, 13–26. [Google Scholar] [CrossRef]
- Wood, W.; Patterson, A.; Tsuruoka, H.; Jain, R.; Ellman, J. Substrate Activity Screening: A Fragment-Based Method for the Rapid Identification of Nonpeptidic Protease Inhibitors. J. Am. Chem. Soc. 2005, 127, 15521–15527. [Google Scholar] [CrossRef]
- eMolecules. Available online: https://www.emolecules.com/ (accessed on 30 August 2023).
- Silva, L.R.; Guimaraes, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Junior, E.F. Computer-aided design of 1, 4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorganic Med. Chem. 2021, 41, 116213. [Google Scholar] [CrossRef] [PubMed]
- Shoichet, B.K. Screening in a spirit haunted world. Drug Discov. Today 2006, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Shoichet, B.K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem. 2006, 49, 7274–7277. [Google Scholar] [CrossRef]
- Jadhav, A.; Ferreira, R.; Klumpp, C.; Mott, B.; Austin, C.; Inglese, J.; Thomas, C.; Maloney, D.; Shoichet, B.; Simeonov, A. Quantitative Analyses of Aggregation, Autofluorescence, and Reactivity Artifacts in a Screen for Inhibitors of a Thiol Protease. J. Med. Chem. 2010, 53, 37–51. [Google Scholar] [CrossRef]
- Martins, L.; de Oliveira, R.; Lameira, J.; Ferreira, R. Experimental and Computational Study of Aryl-thiosemicarbazones Inhibiting Cruzain Reveals Reversible Inhibition and a Stepwise Mechanism. J. Chem. Inf. Model. 2023, 63, 1506–1520. [Google Scholar] [CrossRef]
- Xu, Y.; Chigan, J.; Li, J.; Ding, H.; Sun, L.; Liu, L.; Hu, Z.; Yang, K. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorganic Chem. 2022, 124, 105799. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.; Basavapathruni, A.; Moyer, M.; Scott, M. Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis. Anal. Biochem. 2011, 416, 206–210. [Google Scholar] [CrossRef]
- Morrison, J.F.; Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. Relat. Areas Mol. Biol. 1988, 61, 201–301. [Google Scholar]
- Zhu, L.; George, S.; Schmidt, M.; Al-Gharabli, S.; Rademann, J.; Hilgenfeld, R. Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease. Antivir. Res. 2011, 92, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Dax, C.; Coinçon, M.; Sygusch, J.; Blonski, C. Hydroxynaphthaldehyde phosphate derivatives as potent covalent Schiff base inhibitors of fructose-1,6-bisphosphate aldolase. Biochemistry 2005, 44, 5430–5443. [Google Scholar] [CrossRef] [PubMed]
- Philip, V.; Harris, J.; Adams, R.; Nguyen, D.; Spiers, J.; Baudry, J.; Howell, E.; Hinde, R. A survey of aspartate- phenylalanine and glutamate- phenylalanine interactions in the protein data bank: Searching for anion- π pairs. Biochemistry 2011, 50, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Cihan Sorkun, M.; Mullaj, D.; Koelman, J.; Er, S. ChemPlot, a python library for chemical space visualization. Chemistry-Methods 2022, 2, e202200005. [Google Scholar] [CrossRef]
- Medina-Franco, J.; Martínez-Mayorga, K.; Giulianotti, M.; Houghten, R.; Pinilla, C. Visualization of the chemical space in drug discovery. Curr. Comput.-Aided Drug Des. 2008, 4, 322–333. [Google Scholar] [CrossRef]
- Reymond, J.; Van Deursen, R.; Blum, L.; Ruddigkeit, L. Chemical space as a source for new drugs. MedChemComm 2010, 1, 30–38. [Google Scholar] [CrossRef]
- Lipinski, C.; Hopkins, A. Navigating chemical space for biology and medicine. Nature 2004, 432, 855–861. [Google Scholar] [CrossRef]
- Oprea, T.I. Chemical space navigation in lead discovery. Curr. Opin. Chem. Biol. 2002, 6, 384–389. [Google Scholar] [CrossRef]
- Csizmadia, P. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. In Proceedings of the 3rd International Electronic Conference on Synthetic Organic Chemistry, Basel, Switzerland, 1–30 November 1999. [Google Scholar]
- Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 2013, 8, 31. [Google Scholar]
- Ropp, P.; Kaminsky, J.; Yablonski, S.; Durrant, J. Dimorphite-DL: An open-source program for enumerating the ionization states of drug-like small molecules. J. Cheminform. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Morris, G.; Huey, R.; Lindstrom, W.; Sanner, M.; Belew, R.; Goodsell, D.; Olson, A. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A.; Sanner, M.; Koch, A.; Forli, S. Accelerating AutoDock4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 2021, 17, 1060–1073. [Google Scholar] [CrossRef]
- Case, D.; Duke, R.; Walker, R.; Skrynnikov, N.; Cheatham, T., III; Mikhailovskii, O.; Simmerling, C.; Xue, Y.; Roitberg, A.; Izmailov, S.; et al. Amber 2022; University of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Kollman, P.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem. 2005, 48, 4040–4048. [Google Scholar] [CrossRef] [PubMed]
- Miller III, B.; McGee, T., Jr.; Swails, J.; Homeyer, N.; Gohlke, H.; Roitberg, A. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Cédric, B.; Sébastien, F. ProLIF: A library to encode molecular interactions as fingerprints. J. Cheminformatics 2021, 13, 72. [Google Scholar]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Centro de Computación de Alto Desempeño de la Universidad Nacional de Córdoba. Available online: https://ccad.unc.edu.ar/ (accessed on 1 March 2024).
- Fulmer, G.; Miller, A.; Sherden, N.; Gottlieb, H.; Nudelman, A.; Stoltz, B.; Bercaw, J.; Goldberg, K. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Zsabka, P.; Opsomer, T.; Van Hecke, K.; Dehaen, W.; Wilden, A.; Modolo, G.; Verwerft, M.; Binnemans, K.; Cardinaels, T. Solvent Extraction Studies for the Separation of Trivalent Actinides from Lanthanides with a Triazole-functionalized 1,10-phenanthroline Extractant. Solvent Extr. Ion Exch. 2020, 38, 719–734. [Google Scholar] [CrossRef]
- do Valle Moreira, T.; Martins, L.; Diniz, L.; Bernardes, T.; de Oliveira, R.; Ferreira, R. Screening the Pathogen Box to Discover and Characterize New Cruzain and Tbr CatL Inhibitors. Pathogens 2023, 12, 251. [Google Scholar] [CrossRef] [PubMed]
- Barbosa da Silva, E.; Rocha, D.; Fortes, I.; Yang, W.; Monti, L.; Siqueira-Neto, J.; Caffrey, C.; McKerrow, J.; Andrade, S.; Ferreira, R. Structure-based optimization of quinazolines as cruzain and Tbr CATL inhibitors. J. Med. Chem. 2021, 64, 13054–13071. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; da Silva, E.; Braga, S.; Leite, P.; Martins, L.; Vieira, R.; Soh, W.; Soh, W.; Villela, F.; Costa, F.; et al. Discovery and characterization of trypanocidal cysteine protease inhibitors from the ‘malaria box’. Eur. J. Med. Chem. 2019, 179, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, P.; Miller, B.; McCall, L.; Almaliti, J.; Reher, R.; Hirata, K.; Le, T.; Siqueira-Neto, J.; Hook, V.; Gerwick, W. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem. 2019, 62, 9026–9044. [Google Scholar] [CrossRef]
- Buckner, F.; Verlinde, C.; La Flamme, A.; Van Voorhis, W. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [Google Scholar] [CrossRef]
- Lafon-Hughes, L.; Villamil, S.; Larrea, S. Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways. Parasitology 2021, 148, 1680–1690. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, T.; Qing, G. cAMP-modulated biomimetic ionic nanochannels based on a smart polymer. J. Mater. Chem. B 2019, 7, 3710–3715. [Google Scholar] [CrossRef]
R3 | R1 | Es a | Yield c | % CZP inh. e | IC50 (M) f | Ald a | Yield d | % CZP inh. e | IC50 (M) f |
---|---|---|---|---|---|---|---|---|---|
BDX | Phe | Es-1b | 89% | 15 ± 2 | n.d. | Ald-1 | 36% | 64 ± 5 | 41 ± 4 |
Val | Es-2 | 85% | 9 ± 7 | n.d. | Ald-2 | 53% | 55 ± 3 | n.d. | |
Glu | Es-3 | 50% | 8 ± 7 | n.d. | Ald-3 | 21% | 8 ± 2 | n.d. | |
His | Es-4 | 89% | 5 ± 4 | n.d. | Ald-4 | 42% | 83 ± 2 | 5 ± 2 | |
Leu | Es-5 | 90% | 5 ± 2 | n.d. | Ald-5 | 32% | 64 ± 2 | 7 ± 2 | |
Lys | Es-6 | 48% | 9 ± 2 | n.d. | Ald-6 | 51% | 81 ± 2 | 3.3 ± 0.3 | |
Met | Es-7b | 84% | 9 ± 8 | n.d. | Ald-7 | 59% | 42 ± 7 | n.d. | |
Ala | Es-8 | 84% | 8 ± 7 | n.d. | Ald-8 | 38% | 8 ± 4 | n.d. | |
Phg | Es-9 | 82% | 6 ± 5 | n.d. | Ald-9 | 37% | 11 ± 3 | n.d. | |
Ser | Es-10 | 87% | 47 ± 6 | n.d. | Ald-10 | 56% | 87 ± 1 | 3.4 ± 0.5 | |
Thr | Es-11 | 65% | 0 ± 2 | n.d. | Ald-11 | 44% | 58 ± 4 | n.d. | |
Trp | Es-12 | 68% | 15 ± 2 | n.d. | Ald-12 | 58% | 56 ± 7 | 45.4 ± 0.3 | |
Tyr | Es-13 | 51% | 8 ± 1 | n.d. | Ald-13 | 43% | 83 ± 2 | 13 ± 5 | |
Cys | Es-14 | 73% | 53 ± 4 | n.d. | Ald-14 | - | - | - | |
Arg | Es-15 | 43% | 86 ± 1 | 6.8 ± 0.3 | Ald-15 | - | - | - | |
THQ | Phe | Es-16b | 76% | 13 ± 6 | n.d. | Ald-16 | 55% | 34 ± 5 | n.d. |
His | Es-17 | 54% | 6 ± 3 | n.d. | Ald-17 | 56% | 38 ± 6 | n.d. | |
Met | Es-18b | 60% | 0 ± 6 | n.d. | Ald-18 | 43% | 16 ± 4 | n.d. | |
Phg | Es-19 | 51% | 0 ± 3 | n.d. | Ald-19 | 49% | 3 ± 10 | n.d. | |
Ser | Es-20 | 77% | 5 ± 4 | n.d. | Ald-20 | 38% | 83 ± 3 | 7 ± 4 | |
Thr | Es-21 | 71% | 0 ± 7 | n.d. | Ald-21 | 37% | 8 ± 7 | n.d. | |
Trp | Es-22 | 58% | 1 ± 6 | n.d. | Ald-22 | 50% | 55 ± 9 | n.d. | |
Tyr | Es-23 | 51% | 1 ± 14 | n.d. | Ald-23 | 44% | 20 ± 4 | n.d. | |
Arg | Es-24 | 28% | 6 ± 1 | n.d. | Ald-24 | - | - | - |
Compd ID | % CZP inhib. | % hCatL inhib. |
---|---|---|
Es-14 | 53 ± 4 | 0 ± 26 |
Es-15 | 86 ± 1 | 26 ± 16 |
Ald-1 | 64 ± 5 | 0 ± 21 |
Ald-4 | 83 ± 2 | 10 ± 3 |
Ald-5 | 64 ± 2 | 24 ± 9 |
Ald-6 | 81 ± 2 | 26 ± 5 |
Ald-10 | 87 ± 1 | 7 ± 2 |
Ald-12 | 56 ± 7 | 0 ± 16 |
Ald-13 | 83 ± 2 | 0 ± 22 |
Ald-20 | 83 ± 3 | 0 ± 39 |
E-64 * | 98 ± 2 | 97 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerutti, J.P.; Diniz, L.A.; Santos, V.C.; Vilchez Larrea, S.C.; Alonso, G.D.; Ferreira, R.S.; Dehaen, W.; Quevedo, M.A. Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain. Molecules 2024, 29, 4224. https://doi.org/10.3390/molecules29174224
Cerutti JP, Diniz LA, Santos VC, Vilchez Larrea SC, Alonso GD, Ferreira RS, Dehaen W, Quevedo MA. Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain. Molecules. 2024; 29(17):4224. https://doi.org/10.3390/molecules29174224
Chicago/Turabian StyleCerutti, Juan Pablo, Lucas Abreu Diniz, Viviane Corrêa Santos, Salomé Catalina Vilchez Larrea, Guillermo Daniel Alonso, Rafaela Salgado Ferreira, Wim Dehaen, and Mario Alfredo Quevedo. 2024. "Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain" Molecules 29, no. 17: 4224. https://doi.org/10.3390/molecules29174224
APA StyleCerutti, J. P., Diniz, L. A., Santos, V. C., Vilchez Larrea, S. C., Alonso, G. D., Ferreira, R. S., Dehaen, W., & Quevedo, M. A. (2024). Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain. Molecules, 29(17), 4224. https://doi.org/10.3390/molecules29174224