Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration
Abstract
:1. Introduction
2. Results
2.1. Recovery of 229Th in Electroplating as a Function of Time and Amperage
2.2. UO22+ Removal Prior to Extraction with TBP
2.3. Comparison of Extraction Methods Ex1, Ex2, and Ex3
2.4. Validation of the Most Optimal Method for the Separation of Th
2.4.1. Accuracy and Precision
2.4.2. Sensitivity of the Method
2.4.3. Linearity of the Method
3. Materials and Methods
3.1. Reference Solutions, Reagents, Materials, and Measurement Equipment
3.1.1. Reference Solutions
3.1.2. Laboratory Reagents, Equipment, and Materials
3.1.3. Alpha Measuring Equipment
3.2. Mineralization of Samples
3.3. Electrodeposition of Th on Stainless Steel Plate
3.4. Radiochemical Method
3.4.1. Removal of UO22+ Prior to Extraction with TBP
3.4.2. Extraction Method 1
3.4.3. Extraction Method 2
3.4.4. Extraction Method 3
3.4.5. Criteria for Selection of Optimal Separation Conditions
3.5. Determination of Activity Concentration, Uncertainty, Decision Limit, and Limit of Detection
3.6. Statistical Validation Criteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fesenko, S.V.; Emlyutina, E.S. Thorium Concentrations in Terrestrial and Freshwater Organisms: A Review of the World Data. Biol. Bull. 2023, 50, 3330–3341. [Google Scholar] [CrossRef]
- Fesenko, S.V.; Emlutina, E.S. Thorium Concentrations in the Environment: A Review of the Global Data. Biol. Bull. 2021, 48, 2086–2097. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Standish, C.D.; García-Diez, M.; Pettitt, P.B.; Milton, J.A.; Zilhão, J.; Alcolea-González, J.J.; Cantalejo-Duarte, P.; Collado, H.; de Balbín, R.; et al. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 2018, 359, 912–915. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Angelucci, D.E.; Villaverde, V.; Zapata, J.; Zilhão, J. Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Sci. Adv. 2018, 4, eaar5255. [Google Scholar] [CrossRef] [PubMed]
- Syed, H.S. Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J. Radioanal. Nucl. Chem. 1999, 241, 11–14. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Taylor, S.R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia. Chem. Geol. 1981, 33, 115–125. [Google Scholar] [CrossRef]
- Olley, J.M.; Murray, A.; Roberts, R.G. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat. Sci. Rev. 1996, 15, 751–760. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Rozanov, A.G. Geochemistry of Rare Earth Elements and Thorium in Sediments and Ferromanganese Nodules of the Atlantic Ocean. Lithol. Miner. Resour. 2001, 36, 268–279. [Google Scholar] [CrossRef]
- Gil-Pacheco, E.; Suarez-Navarro, J.A.; Sanchez-Gonzalez, S.M.; Suarez-Navarro, M.J.; Hernaiz, G.; Garcia-Sanchez, A. A radiological index for evaluating the impact of an abandoned uranium mining area in Salamanca, Western Spain. Environ. Pollut. 2020, 258, 113825. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Yu, J.; Wang, Y.; Zhou, L. Release behavior uranium and thorium in soil from a decommissioned uranium tailings in Jiangxi Province, China. J. Radioanal. Nucl. Chem. 2021, 330, 833–843. [Google Scholar] [CrossRef]
- Vera Tomé, F.; Blanco Rodríguez, P.; Lozano, J.C. Distribution and mobilization of U, Th and 226Ra in the plant–soil compartments of a mineralized uranium area in south-west Spain. J. Environ. Radioact. 2002, 59, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Pilviô, R.; Bickel, M. Actinide separations using extraction chromatography. In Proceedings of the 6th South Pacific Environmental Radioactivity Association Conférence, Nouméa IRD Centre, Paris, France, 19–23 June 2002. [Google Scholar]
- Ermolaev, S.V.; Skasyrskaya, A.K.; Vasiliev, A.N. Rapid Elution of 226Th from a Two-Column 230U/226Th Generator with Diluted and Buffer Solutions. Molecules 2023, 28, 3548. [Google Scholar] [CrossRef]
- Exposito-Suarez, V.M.; Suarez-Navarro, J.A.; Aguado-Herreros, C.M.; Sanz, M.B.; Suarez-Navarro, M.J.; Caro, A. Increasing the recovery and selectivity of 238U, 235U, and 234U extraction with tri-n-butyl phosphate in mine tailing samples with a high copper content. Anal Chim Acta 2023, 1259, 341183. [Google Scholar] [CrossRef] [PubMed]
- Metzger, S.C.; Rogers, K.T.; Bostick, D.A.; McBay, E.H.; Ticknor, B.W.; Manard, B.T.; Hexel, C.R. Optimization of uranium and plutonium separations using TEVA and UTEVA cartridges for MC-ICP-MS analysis of environmental swipe samples. Talanta 2019, 198, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Salminen-Paatero, S.; Hou, X.; Olszewski, G.; Ekerljung, L.; Tovedal, A.; Vesterlund, A.; Andersson, A.; Kangas, S.; Ramebäck, H. Analyzing alpha emitting isotopes of Pu, Am and Cm from NPP water samples: An intercomparison of Nordic radiochemical laboratories. J. Radioanal. Nucl. Chem. 2021, 329, 1447–1458. [Google Scholar] [CrossRef]
- Casacuberta, N.; Lehritani, M.; Mantero, J.; Masqué, P.; Garcia-Orellana, J.; Garcia-Tenorio, R. Determination of U and Th α-emitters in NORM samples through extraction chromatography by using new and recycled UTEVA resins. Appl. Radiat. Isot. 2012, 70, 568–573. [Google Scholar] [CrossRef]
- Helaly, O.S.; Abd El-Ghany, M.S.; Moustafa, M.I.; Abuzaid, A.H.; Abd El-Monem, N.M.; Ismail, I.M. Extraction of cerium(IV) using tributyl phosphate impregnated resin from nitric acid medium. Trans. Nonferrous Met. Soc. China 2012, 22, 206–214. [Google Scholar] [CrossRef]
- Feuchter, H.; Duval, S.; Volkringer, C.; Ouf, F.-X.; Rigollet, L.; Cantrel, L.; De Mendonca Andrade, M.; Salm, F.; Lavalette, C.; Loiseau, T. Influence of Light and Temperature on the Extractability of Cerium(IV) as a Surrogate of Plutonium(IV) and its Effect on the Simulation of an Accidental Fire in the PUREX Process. ACS Omega 2019, 4, 12896–12904. [Google Scholar] [CrossRef]
- Prabhu, D.R.; Sengupta, A.; Murali, M.S.; Pathak, P.N. Role of diluents in the comparative extraction of Th(IV), U(VI) and other relevant metal ions by DHOA and TBP from nitric acid media and simulated wastes: Reprocessing of U–Th based fuel in perspective. Hydrometallurgy 2015, 158, 132–138. [Google Scholar] [CrossRef]
- Michaud, S.; Miguirditchian, M.; Deblonde, G.; Dinh, B.; Hérès, X.; Andreoletti, G. Modelling of Thorium Extraction by TBP. Procedia Chem. 2012, 7, 251–257. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.M.; Guerrero, J.L.; Mosqueda, F.; Gázquez, M.J.; Bolívar, J.P. Hydrochemical behaviour of long-lived natural radionuclides in Spanish groundwaters. Catena 2020, 191, 104558. [Google Scholar] [CrossRef]
- Hubaux, A.; Vos, G. Decision and detection limits for calibration curves. Anal. Chem. 1970, 42, 849–855. [Google Scholar] [CrossRef]
- UNE-EN ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. UNE, I.E: Madrid, Spain, 2017.
- Suarez-Navarro, J.A.; Pujol, L.; Suarez-Navarro, M.J. Sample pretreatment in the determination of specific alpha emitters in drinking water using [Ba+Fe]-coprecipitation method. Appl. Radiat. Isot. 2015, 96, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Hallstadius, L. A method for the electrodeposition of actinides. Nucl. Instrum. Methods Phys. Res. 1984, 223, 266–267. [Google Scholar] [CrossRef]
- Kimura, T.; Kobayashi, Y. Coprecipitation of uranium and thorium with barium sulfate. J. Radioanal. Nucl. Chem. 1985, 91, 59–65. [Google Scholar] [CrossRef]
- Thakur, P.; Ward, A.L.; Gonzalez-Delgado, A.M. Optimal methods for preparation, separation, and determination of radium isotopes in environmental and biological samples. J. Env. Radioact 2021, 228, 106522. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K. Extraction of Thorium and Uranium from Chloride Solutions by Tri-n-Butyl Phosphate and Tri-n-Octyl Phosphine Oxide. J. Nucl. Sci. Technol. 1964, 1, 155–162. [Google Scholar] [CrossRef]
- Kirkpatrick, J.M.; Venkataraman, R.; Young, B.M. Minimum detectable activity, systematic uncertainties, and the ISO 11929 standard. J. Radioanal. Nucl. Chem. 2013, 296, 1005–1010. [Google Scholar] [CrossRef]
- ISO 11929-7; Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements. Part 7: Fundamentals and General Applications. ISO: Gèneve, Switzerland, 2005.
- ISO 13528:2022; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons (Third edition). International Organization for Standardization: Geneve, Switzerland, 2022.
- Suarez-Navarro, J.A.; Exposito-Suarez, V.M.; Crespo, M.T.; Sanchez-Castano, B.; Suarez-Navarro, M.J.; Gasco, C.; Barragan, M.; Gascon, J.L.; Pecker, R.; Sanchez-Perez, L.; et al. Improvements in the radiochemical method for separating 226Ra in solid samples through coprecipitation with BaSO4. Appl. Radiat. Isot. Incl. Data Instrum. Methods Use Agric. Ind. Med. 2022, 187, 110321. [Google Scholar] [CrossRef]
- Suarez-Navarro, J.A.; Pujol, L.; Suarez-Navarro, M.J. Determination of specific alpha-emitting radionuclides (uranium, plutonium, thorium and polonium) in water using [Ba+ Fe]-coprecipitation method. Appl. Radiat. Isot. 2017, 130, 162–171. [Google Scholar] [CrossRef]
- Peppard, D.F.; Mason, G.W.; Gergel, M.V. The mutual separation of thorium, protoactinium, and uranium by tributyl phosphate extraction from hydrochloric acid. J. Inorg. Nucl. Chem. 1957, 3, 370–378. [Google Scholar] [CrossRef]
- Ikhwan, F.H.; Kazama, H.; Abe, C.; Konashi, K.; Suzuki, T. Behaviors of actinides in chromatographic separation by using TBP resin in nitric acid solution and hydrochloric acid solution. J. Nucl. Sci. Technol. 2024, 61, 375–383. [Google Scholar] [CrossRef]
Sample | Ud | BaSO4 | Recovery (%) | |
---|---|---|---|---|
1 | A | 45.5 ± 2.3 | ||
B | 49.7 ± 2.5 | |||
2 | A | 66.1 ± 3.1 | ||
B | 71.8 ± 3.5 | |||
3 | A | 14.94 ± 0.90 | ||
B | 14.38 ± 0.93 |
Reference of the Sample | 232Th | 230Th | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Activity (Bq kg−1) | Experimental Activity (Bq kg−1) | ζ-Score | RB (%) | RSD (%) | Reference Activity (Bq kg−1) | Experimental Activity (Bq kg−1) | ζ-Score | RB (%) | RSD (%) | |
IAEA-327 | 36.7 ± 6.8 | 38.0 ± 2.9 | −0.09 | −1.7 | 2.1 | 34.1 ± 4.8 | 38.9 ± 3.0 | 0.92 | 14.2 | 6.2 |
37.8 ± 2.8 | −0.12 | −2.4 | 35.4 ± 2.8 | 0.26 | 3.9 | |||||
36.9 ± 2.1 | −0.26 | −4.7 | 34.1 ± 2.1 | 0.00 | 0.0 | |||||
38.8 ± 2.3 | 0.02 | 0.3 | 34.5 ± 2.1 | 0.08 | 1.1 | |||||
IAEA-326 | 39.4 ± 7.8 | 39.3 ± 2.0 | −0.02 | −0.3 | 10.2 | 34.1 ± 6.4 | 41.2 ± 2.1 | 1.08 | 20.9 | 12.2 |
40.6 ± 2.0 | 0.15 | 3.0 | 33.9 ± 1.8 | −0.03 | −0.5 | |||||
49.1 ± 3.3 | 1.15 | 24.7 | 44.4 ± 3.1 | 1.52 | 30.3 | |||||
42.5 ± 2.9 | 0.37 | 7.7 | 36.2 ± 2.7 | 0.32 | 6.2 | |||||
MAPEP-MaS46 | 42.0 ± 6.0 | 44.7 ± 2.8 | 0.41 | 6.4 | 5.8 | 38.0 ± 4.0 | 36.8 ± 2.5 | −0.28 | −3.3 | 6.5 |
39.5 ± 2.4 | −0.38 | −5.8 | 35.5 ± 2.3 | −0.56 | −6.4 | |||||
43.1 ± 2.5 | 0.17 | 2.7 | 36.7 ± 2.2 | −0.31 | −3.5 | |||||
40.2 ± 2.3 | −0.28 | −4.2 | 31.9 ± 2.1 | −1.42 | −16.0 | |||||
MAPEP-Mas48 | 43.3 ± 1.4 | 42.1 ± 3.6 | −0.31 | −2.8 | 5.6 | 40.0 ± 2.2 | 34.4 ± 3.4 | −1.68 | −14.1 | 11.1 |
44.3 ± 3.0 | 0.31 | 2.4 | 44.3 ± 3.0 | 1.38 | 10.8 | |||||
47.0 ± 3.4 | 0.99 | 8.5 | 40.2 ± 3.1 | 0.06 | 0.5 | |||||
41.7 ± 2.8 | −0.52 | −3.8 | 36.8 ± 2.6 | −1.08 | −8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Expósito-Suárez, V.M.; Suárez-Navarro, J.A.; Benavente, J.F. Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration. Molecules 2024, 29, 4225. https://doi.org/10.3390/molecules29174225
Expósito-Suárez VM, Suárez-Navarro JA, Benavente JF. Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration. Molecules. 2024; 29(17):4225. https://doi.org/10.3390/molecules29174225
Chicago/Turabian StyleExpósito-Suárez, Víctor Manuel, José Antonio Suárez-Navarro, and José Francisco Benavente. 2024. "Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration" Molecules 29, no. 17: 4225. https://doi.org/10.3390/molecules29174225
APA StyleExpósito-Suárez, V. M., Suárez-Navarro, J. A., & Benavente, J. F. (2024). Study of the Chemical Recovery and Selectivity against U in the Radiochemical Separation of Th with Tri-n-butyl Phosphate by Varying the Proportion of Xylene and HCl Concentration. Molecules, 29(17), 4225. https://doi.org/10.3390/molecules29174225