Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Biotransformation Study
4.3. High-Performance Liquid Chromatography–Photometric Diode Array (HPLC-PDA) and Liquid Chromatography–Mass Spectrometric (LC-MS) Analyses
4.4. NMR Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verbeeck, R.K.; Blackburn, J.L.; Loewen, G.R. Clinical Pharmacokinetics of Non-Steroidal Anti-Inflammatory Drugs. Clin. Pharmacokinet. 1983, 8, 297–331. [Google Scholar] [CrossRef] [PubMed]
- Brater, D.C. Clinical Pharmacology of NSAIDs. J. Clin. Pharmacol. 1988, 28, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Lozada, A.; Surapaneni, S.; Skiles, G.L.; Subramanian, R. Biosynthesis of Drug Metabolites Using Microbes in Hollow Fiber Cartridge Reactors: Case Study of Diclofenac Metabolism by Actinoplanes Species. Drug Metab. Dispos. 2008, 36, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Joint Formulary Committee. British National Formulary: BNF 76, 76th ed.; Pharmaceutical Press: London, UK, 2018; ISBN 9780857113382. [Google Scholar]
- The Top 300 of 2020. Available online: https://clincalc.com/DrugStats/Top300Drugs.aspx (accessed on 25 June 2024).
- Sumatriptan (Monograph). Available online: https://www.drugs.com/monograph/sumatriptan.html (accessed on 25 June 2024).
- Syed, Y.Y. Sumatriptan/Naproxen Sodium: A Review in Migraine. Drugs 2016, 76, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Sumatriptan Pregnancy and Breastfeeding Warnings. Available online: https://www.drugs.com/pregnancy/sumatriptan.html (accessed on 25 June 2024).
- Pöstges, T.; Lehr, M. Metabolism of Sumatriptan Revisited. Pharmacol. Res. Perspect. 2023, 11, e01051. [Google Scholar] [CrossRef] [PubMed]
- Sumatriptan. Available online: https://clincalc.com/DrugStats/Drugs/Sumatriptan (accessed on 25 June 2024).
- Fang, F.C. Antimicrobial Actions of Reactive Oxygen Species. mBio 2011, 2, e00141-11. [Google Scholar] [CrossRef] [PubMed]
- Slauch, J.M. How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Aussel, L.; Zhao, W.; Hébrard, M.; Guilhon, A.A.; Viala, J.P.M.; Henri, S.; Chasson, L.; Gorvel, J.P.; Barras, F.; Méresse, S. Salmonella Detoxifying Enzymes Are Sufficient to Cope with the Host Oxidative Burst. Mol. Microbiol. 2011, 80, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Jenul, C.; Keim, K.C.; Jens, J.N.; Zeiler, M.J.; Schilcher, K.; Schurr, M.J.; Melander, C.; Phelan, V.V.; Horswill, A.R. Pyochelin Biotransformation by Staphylococcus Aureus Shapes Bacterial Competition with Pseudomonas Aeruginosa in Polymicrobial Infections. Cell Rep. 2023, 42, 112540. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, I.; Ahmad, S.; Mukhtar, M.F.; Arshad, A.; Imran, M.; Mahmood, W. Microbial Biotransformation of Dexamethasone by Bacillus Subtilis (ATCC 6051). Pharm. Chem. J. 2015, 49, 405–408. [Google Scholar] [CrossRef]
- Burke, L.; Hopkins, K.L.; Meunier, D.; de Pinna, E.; Fitzgerald-Hughes, D.; Humphreys, H.; Woodford, N. Resistance to Third-Generation Cephalosporins in Human Non-Typhoidal Salmonella Enterica Isolates from England and Wales, 2010–2012. J. Antimicrob. Chemother. 2014, 69, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Kolla, N.J.; Bortolato, M. The Role of Monoamine Oxidase A in the Neurobiology of Aggressive, Antisocial, and Violent Behavior: A Tale of Mice and Men. Prog. Neurobiol. 2020, 194, 101875. [Google Scholar] [CrossRef] [PubMed]
Organism | TIC, tr (min) | [M]+ (amu) | Fragmentation Pattern (amu) |
---|---|---|---|
B. subtilis | 1.126 | [C8H10S]+ | |
Salmonella spp. | 1.111 | [C10H21N3O2S]+ | |
Salmonella spp. | 0.994 | [C12H21N3O2S+H]+ | |
P. aeruginosa | 1.126 | ||
B. subtilis | 1.133 | ||
S. aureus | 1.214 |
Metabolite | LD50 (rat) a mg kg−1 | Pharmacological Properties b |
---|---|---|
(3-methylphenyl)methanethiol (Mw 138.23 g mol−1; CAS # 25697-56-7) | 618.96 | Gastrointestinal absorption: High BBB permeation: Yes Cytochrome P450 1A2 inhibitor: Yes—could result in increased toxicity for CYP1A2 substrates CYP2C19 inhibitor: No, CYP2C9 inhibitor: No CYP2D6 inhibitor: No, CYP3A4 inhibitor: No |
1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Mw 228.31 g mol−1) | 2461.97 | Gastrointestinal absorption: High BBB permeation: No Cytochrome P450 1A2 inhibitor: No CYP2C19 inhibitor: No, CYP2C9 inhibitor: No CYP2D6 inhibitor: No, CYP3A4 inhibitor: No |
1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Mw 253.36 g mol−1) Sumatriptan succinate | 201 2939 | Gastrointestinal absorption: High BBB permeation: No Cytochrome P450 1A2 inhibitor: No CYP2C19 inhibitor: No, CYP2C9 inhibitor: No CYP2D6 inhibitor: No, CYP3A4 inhibitor: No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jehangir, M.; Iqbal, M.S.; Aftab, U. Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica. Molecules 2024, 29, 4226. https://doi.org/10.3390/molecules29174226
Jehangir M, Iqbal MS, Aftab U. Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica. Molecules. 2024; 29(17):4226. https://doi.org/10.3390/molecules29174226
Chicago/Turabian StyleJehangir, Muhammad, Mohammad Saeed Iqbal, and Usman Aftab. 2024. "Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica" Molecules 29, no. 17: 4226. https://doi.org/10.3390/molecules29174226
APA StyleJehangir, M., Iqbal, M. S., & Aftab, U. (2024). Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica. Molecules, 29(17), 4226. https://doi.org/10.3390/molecules29174226