Activation Mechanism of Fe2+ in Pyrrhotite Flotation: Microflotation and DFT Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. Microflotation for Pyrrhotite
2.3. Activation of Fe2+ on the Pyrrhotite (001) Surface
2.4. DOS analysis for Fe ions of Pyrrhotite (001)
2.5. Adsorption of Xanthate on the Surface of Pyrrhotite (001)
2.6. DOS Analysis of Fe2+ and S in BX
2.7. Mulliken Analysis of Fe2+ on the Surface of Pyrite (001)
3. Materials and Methods
3.1. Description of Samples
3.2. Microflotation
3.3. Calculation Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belzile, N.; Chen, Y.-W.; Cai, M.-F.; Li, Y. A review on pyrrhotite oxidation. J. Geochem. Explor. 2004, 84, 65–76. [Google Scholar] [CrossRef]
- Agar, G.E. Flotation of chalcopyrite, pentlandite, pyrrhotite ores. Int. J. Miner. Process. 1991, 33, 1–19. [Google Scholar] [CrossRef]
- Arvidson, B.; Klemetti, M.; Knuutinen, T.; Kuusisto, M.; Man, Y.T.; Hughes-Narborough, C. Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w. Miner. Eng. 2013, 50–51, 4–12. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, D.; Chen, J.; Li, Y.; Chen, Y.; Li, W. The interaction of cyanide with pyrite, marcasite and pyrrhotite. Miner. Eng. 2016, 95, 131–137. [Google Scholar] [CrossRef]
- Lehmann, M.N.; O’Leary, S.; Dunn, J.G. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite. Miner. Eng. 2000, 13, 1–18. [Google Scholar] [CrossRef]
- da Silva, G.R.; Waters, K.E. The effects of microwave irradiation on the floatability of chalcopyrite, pentlandite and pyrrhotite. Adv. Powder Technol. 2018, 29, 3049–3061. [Google Scholar] [CrossRef]
- Becker, M.; Villiers, J.D.; Bradshaw, D. The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Miner. Eng. 2010, 23, 1045–1052. [Google Scholar] [CrossRef]
- Miller, J.D.; Li, J.; Davidtz, J.C.; Vos, F. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Miner. Eng. 2005, 18, 855–865. [Google Scholar] [CrossRef]
- Meng, Q.; Yuan, Z.; Du, Y.; Wang, J. Sulfuric acid pretreatment of oxidized pyrrhotite in flotation desulphurization of magnetite concentrate. Miner. Eng. 2023, 203, 108347. [Google Scholar] [CrossRef]
- Chiriţă, P.; Rimstidt, J.D. Pyrrhotite dissolution in acidic media. Appl. Geochem. 2014, 41, 1–10. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y. A review of flotation and selective separation of pyrrhotite: A perspective from crystal structures. Int. J. Min. Sci. Technol. 2022, 32, 847–863. [Google Scholar] [CrossRef]
- Ekmekçi, Z.; Becker, M.; Tekes, E.B.; Bradshaw, D. An impedance study of the adsorption of CuSO4 and SIBX on pyrrhotite samples of different provenances. Miner. Eng. 2010, 23, 903–907. [Google Scholar] [CrossRef]
- Dai, P.; Wei, Z.; Chen, L.; Liu, Y. Adsorption of butyl xanthate on arsenopyrite (001) and Cu2+-activated arsenopyrite (001) surfaces: A DFT study. Chem. Phys. 2022, 562, 111668. [Google Scholar] [CrossRef]
- Dai, P.; Chen, H.; Chen, L.; Liu, Y.; Wei, Z. Depression mechanism of peracetic acid for flotation separation of chalcopyrite from arsenopyrite based on coordination chemistry. Miner. Eng. 2022, 186, 107757. [Google Scholar] [CrossRef]
- Chandra, A.P.; Puskar, L.; Simpson, D.J.; Gerson, A.R. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int. J. Miner. Process. 2012, 114–117, 16–26. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, T.; Xiong, D.; Yang, R.; Peng, Y.; Shao, Y.; Xu, J.; Zeng, J. Pulsating HGMS for industrial separation of chalcopyrite from fine copper-molybdenun co-flotation concentrate. Miner. Eng. 2021, 170, 106967. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Sun, X.; Li, J.; Shen, J.; Han, W.; Wang, L. Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions. J. Hazard. Mater. 2020, 392, 122509. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Shen, J.; Yan, P.; Zhang, J.; Wang, Z.; Zhao, S.; Chen, Z. Catalytic ozonation of 4-chloronitrobenzene by goethite and Fe2+-modified goethite with low defects: A comparative study. J. Hazard. Mater. 2019, 365, 744–750. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Catalytic ozone pretreatment of complex textile effluent using Fe2+ and zero valent iron nanoparticles. J. Hazard. Mater. 2018, 357, 363–375. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y. Transformation of heavy metals and dewaterability of waste activated sludge during the conditioning by Fe2+-activated peroxymonosulfate oxidation combined with rice straw biochar as skeleton builder. Chemosphere 2020, 238, 124628. [Google Scholar] [CrossRef]
- Arena, F.A.; Suegama, P.-C.H.; Bevilaqua, D.; Santos, A.L.A.D.; Fugivara, C.-L.S.; Benedetti, A.V. Simulating the main stages of chalcopyrite leaching and bioleaching in ferrous ions solution: An electrochemical impedance study with a modified carbon paste electrode. Miner. Eng. 2016, 92, 229–241. [Google Scholar] [CrossRef]
- Abrishamkar, M.; Barootkoob, M. Electrooxidation of formaldehyde as a fuel for fuel cells using Fe2+-nano-zeolite modified carbon paste electrode. Int. J. Hydrog. Energy 2017, 42, 23821–23825. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, X.; Tong, X.; Feng, D.; Lv, J.; Chen, Y.; Song, Q. The activation mechanism of Fe(II) ion-modified cassiterite surface to promote salicylhydroxamic acid adsorption. Miner. Eng. 2021, 160, 106707. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Totti, F. Molecular magnets and surfaces: A promising marriage. A DFT insight. Coord. Chem. Rev. 2015, 289–290, 357–378. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; Zhang, W.; Yang, Y.; Guo, D.; Zhang, H.; Liu, L. Reveal the main factors and adsorption behavior influencing the adsorption of pollutants on natural mineral adsorbents: Based on machine learning modeling and DFT calculation. Sep. Purif. Technol. 2024, 331, 125706. [Google Scholar] [CrossRef]
- Long, X.; Chen, J.; Chen, Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study. Appl. Surf. Sci. 2016, 370, 11–18. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.; Liu, G.; Liu, J.; Ma, L.; Niu, X.; Qu, X. A DFT prediction on the chemical reactivity of novel azolethione derivatives as chelating agents: Implications for copper minerals flotation and copper corrosion inhibition. J. Taiwan Inst. Chem. Eng. 2018, 93, 109–123. [Google Scholar] [CrossRef]
- Alsardia, M.M.; Saeed, M.A.; Yousaf, M. DFT Investigations of Density of States of XN (X=Al, Ga, B, In) Compounds. Mater. Today Proc. 2015, 2, 5132–5135. [Google Scholar] [CrossRef]
- Tachikawa, H.; Nagoya, Y.; Fukuzumi, T. Density functional theory (DFT) study on the effects of Li+ doping on electronic states of graphene. J. Power Sources 2010, 195, 6148–6152. [Google Scholar] [CrossRef]
- Kakkar, R.; Garg, R.; Chadha, P. C3H4: Density functional (DFT) study of structures and stabilities of isomers. J. Mol. Struct. THEOCHEM 2002, 617, 141–147. [Google Scholar] [CrossRef]
- Brion, C.E.; Young, J.B.; Litvinyuk, I.V.; Cooper, G. An investigation of the HOMO frontier orbital electron density distributions of NH3, the methylamines and NF3 using DFT and electron momentum spectroscopy. Chem. Phys. 2001, 269, 101–106. [Google Scholar] [CrossRef]
- Singh, O.P.; Yadav, J.S. Bond orders and valence indices: Relations to Mulliken’s population analysis and covalent chemical reactivity. J. Mol. Struct. THEOCHEM 1987, 149, 91–96. [Google Scholar] [CrossRef]
- Ikeda, A.; Nakao, Y.; Sato, H.; Sakaki, S. A resonance theory consistent with Mulliken-population concept. Chem. Phys. Lett. 2011, 505, 148–153. [Google Scholar] [CrossRef]
- Zhao, C.-H.; Chen, J.-H.; Li, Y.-Q.; Chen, Y.; Li, W.-Z. First-principle calculations of interaction of O2 with pyrite, marcasite and pyrrhotite surfaces. Trans. Nonferrous Met. Soc. China 2016, 26, 519–526. [Google Scholar] [CrossRef]
- Huang, H.; Hu, Y.; Sun, W. Activation flotation and mechanism of lime-depressed pyrite with oxalic acid. Int. J. Min. Sci. Technol. 2012, 22, 63–67. [Google Scholar] [CrossRef]
- Chen, H.; Tong, X.; Xie, X.; Xie, R.; Song, Q.; Cui, Y.; Xiao, Y.; Dai, P. Cyanide Depression Mechanism for Sphalerite Flotation Separation Based on Density Functional Theory Calculations and Coordination Chemistry. Minerals 2022, 12, 1271. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, J.; Li, Y.; Huang, D.W.; Li, W. DFT study of interactions between calcium hydroxyl ions and pyrite, marcasite, pyrrhotite surfaces. Appl. Surf. Sci. 2015, 355, 577–581. [Google Scholar] [CrossRef]
- He, J.; Cao, Y.; Jiang, X.; Xu, S.; Zheng, R.; Sun, W.; Gao, Z. Unveiling the adsorption mechanism of xanthate on the pentland-ite/pyrrhotite heterostructure from first principles calculations. Appl. Surf. Sci. 2023, 616, 156480. [Google Scholar] [CrossRef]
- Becker, U.; Munz, A.W.; Lennie, A.R.; Thornton, G.; Vaughan, D.J. The atomic and electronic structure of the (001) surface of mono-clinic pyrrhotite (Fe7S8) as studied using STM, LEED and quantum mechanical calculations. Surf. Sci. 1997, 389, 66–87. [Google Scholar] [CrossRef]
- Lai, H.; Shen, P.; Liu, R.; Liu, D.; Wen, S. Cryo-ToF-SIMS study of sodium isobutyl xanthate adsorption on sulfide minerals. Miner. Eng. 2022, 186, 107723. [Google Scholar] [CrossRef]
- Mhonde, N.; Johansson, L.-S.; Corin, K.; Schreithofer, N. The effect of sodium isobutyl xanthate on galena and chalcopyrite flotation in the presence of dithionite ions. Miner. Eng. 2021, 169, 106985. [Google Scholar] [CrossRef]
- Dc, G.I.; Uribe-Salas, A.; C lvarez-Silva, M. Lc3pez-Saucedo, The role of calcium in xanthate adsorption onto sphalerite. Miner. Eng. 2015, 71, 113–119. [Google Scholar] [CrossRef]
- Prestidge, C.A.; Ralston, J.; Smart, R.S.C. The competitive adsorption of cyanide and ethyl xanthate on pyrite and pyrrhotite surfaces. Int. J. Miner. Process. 1993, 38, 205–233. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, P.; Zhang, W.-B.; Zeng, X.-B.; Cao, Y.-D. Mechanism of sodium sulfide on flotation of cyanide-depressed pyrite. Trans. Nonferrous Met. Soc. China 2020, 30, 484–491. [Google Scholar] [CrossRef]
Model | Spin Density/μB | |Spin Density|/μB | States |
---|---|---|---|
Pyrrhotite(Fe) alone | −8.39 | 25.98 | Antiferromagnetic |
Pyrrhotite(Fe) with Fe2+ | −6.02 | 21.52 | Ferrimagnetic |
Free Fe2+ | −4.54 × 10−8 | 1.37 × 10−7 | Paramagnetic, HS |
Adsorption Model | Chemical Bond | Mulliken Population | Bond Length/(Å) |
---|---|---|---|
Pyrrhotite + Fe2+ + BX | Fe-S1 | 0.41 | 2.315 |
Fe-S2 | 0.42 | 2.271 | |
Pyrrhotite + BX | Fe1-S1 | 0.25 | 2.455 |
Fe2-S2 | 0.27 | 2.378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Tong, X.; Dai, P.; Xie, X.; Xie, R.; Fan, P.; Ma, Y.; Chen, H. Activation Mechanism of Fe2+ in Pyrrhotite Flotation: Microflotation and DFT Calculations. Molecules 2024, 29, 1490. https://doi.org/10.3390/molecules29071490
Song Q, Tong X, Dai P, Xie X, Xie R, Fan P, Ma Y, Chen H. Activation Mechanism of Fe2+ in Pyrrhotite Flotation: Microflotation and DFT Calculations. Molecules. 2024; 29(7):1490. https://doi.org/10.3390/molecules29071490
Chicago/Turabian StyleSong, Qiang, Xiong Tong, Pulin Dai, Xian Xie, Ruiqi Xie, Peiqiang Fan, Yuanlin Ma, and Hang Chen. 2024. "Activation Mechanism of Fe2+ in Pyrrhotite Flotation: Microflotation and DFT Calculations" Molecules 29, no. 7: 1490. https://doi.org/10.3390/molecules29071490
APA StyleSong, Q., Tong, X., Dai, P., Xie, X., Xie, R., Fan, P., Ma, Y., & Chen, H. (2024). Activation Mechanism of Fe2+ in Pyrrhotite Flotation: Microflotation and DFT Calculations. Molecules, 29(7), 1490. https://doi.org/10.3390/molecules29071490