Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle
Abstract
:1. Introduction
2. Results
2.1. GC-MS of Coridiothymus capitatus Extract
2.2. Repellency Assay
2.3. Fumigant Toxicity Assay
2.4. Effects of Coridothymus capitatus and Carvacrol on F1 Progeny Production of T. castaneum (30–45 Days)
2.5. Antifeedant Effects (Grains Weight Loss)
2.6. Residual Toxicity of Carvacrol on Wheat Grains against Adult T. castaneum
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Insect Culture
4.3. Coridothymus capitatus Essential Oil Extraction
4.4. GC-MS Analysis of the Essential Oil
4.5. Repellency Assay
4.6. Fumigant Toxicity Assay
4.7. Effects of C. capitatus and Carvacrol on F1 Progeny Production of T. castaneum (30–45 Days)
4.8. Antifeedant Effects (Grains Weight Loss) of C. capitatus and Carvacrol
4.9. Residual Toxicity of Carvacrol on Wheat Grains against Adult T. castaneum
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bingham, A.C.; Subramanyam, B.; Mahroof, R.; Alavi, S. Development and validation of a model for predicting survival of young larvae of Tribolium castaneum exposed to elevated temperatures during heat treatment of grain-processing facilities. J. Stored Prod. Res. 2017, 72, 143–152. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Dai, J.; Zhu, L. Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind. Crops Prod. 2019, 128, 29–37. [Google Scholar] [CrossRef]
- Abou-Taleb, H.K.; Mohamed, M.I.; Shawir, M.S.; Abdelgaleil, S.A. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Natural Product. Res. 2015, 30, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; El-Aziz, S.E.A.; Omar, E.; Fahim, S.F. Olfaction cues of food odours influencing behavior response of the red flour beetle, Tribolium castanium. Bull. NRC 2014, 39, 1–11. [Google Scholar]
- Awan, D.A.; Saleem, M.A.; Nadeem, M.S.; Shakoori, A.R. Toxicological and biochemical studies on spinosad and synergism with piperonyl butoxide in susceptible and resistant strains of Tribolium castaneum. Pak. J. Zool. 2012, 44, 649–662. [Google Scholar]
- Paranagama, P.; Abeysekera, K.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice. Lett. Appl. Microbiol. 2003, 37, 86–90. [Google Scholar] [CrossRef]
- Talukder, F. Pesticide Resistance in Stored-Product Insects and Alternative Biorational Management: A Brief review. J. Agric. Mar. Sci. 2009, 14, 9. [Google Scholar] [CrossRef]
- Feroz, A. Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamonum camphora and their synergistic combinations against stored product pest, Trogoderma granarium (Everts). J. Stored Prod. Res. 2020, 87, 101614. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Losic, D.; Hadjiarapoglou, L.P.; Elemes, Y. Laboratory evaluation of five novel pyrrole derivatives as grain protectants against Tribolium confusum and Ephestia kuehniella larvae. J. Pest. Sci. 2016, 90, 569–585. [Google Scholar] [CrossRef]
- Boukouvala, M.; Kavallieratos, N.; Athanassiou, C.; Hadjiarapoglou, L. Biological activity of two new pyrrole derivatives against stored-product species: Influence of temperature and relative humidity. Bull. Entomol. Res. 2016, 106, 446–456. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2011, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol. Res. 2015, 114, 3201–3212. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.A.; Bariotakis, M.; Kampa, M.; Sourvinos, G.; Lionis, C.; Castanas, E. The Therapeutic Potential of the Essential Oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. And a Case of Plant-Based Pharmaceutical Development. Front. Pharmacol. 2020, 11, 522213. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef]
- Mobolade, A.J.; Bunindro, N.; Sahoo, D.; Rajashekar, Y. Traditional methods of food grains preservation and storage in Nigeria and India. Ann. Agric. Sci. 2019, 64, 196–205. [Google Scholar] [CrossRef]
- Römbke, J.; Moltmann, J.F. Applied Ecotoxicology; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Shaaya, E.; Kostyukovsky, M.; Demchenko, N. Alternative Fumigants for the Control of Stored-Product Insects; CABI: Wallingford, UK, 2003; pp. 556–560. [Google Scholar] [CrossRef]
- Saad, M.M.G.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zool. 2018, 53, 173–181. [Google Scholar] [CrossRef]
- Kanda, D.; Kaur, S.; Koul, O. A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: Acute toxins or feeding deterrents. J. Pest. Sci. 2016, 90, 531–545. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their Inhibitory Effects on Acetylcholinesterase Activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef]
- Yildirim, E.; Emsen, B.; Kordali, S. Insecticidal Effects of Monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). DOAJ Dir. Open Access J. 2013, 86, 198–204. [Google Scholar] [CrossRef]
- Cao, J.; Guo, S.; Wang, Y.; Pang, X.; Geng, Z.; Du, S. Toxicity and repellency of essential oil from Evodia lenticellata Huang fruits and its major monoterpenes against three stored-product insects. Ecotoxicol. Environ. Saf. 2018, 160, 342–348. [Google Scholar] [CrossRef]
- Ramadan, G.R.; Abdelgaleil, S.A.; Shawir, M.S.; El-Bakary, A.S.; Zhu, K.Y.; Phillips, T.W. Terpenoids, DEET and short chain fatty acids as toxicants and repellents for Rhyzopertha dominica (coleoptera: Bostrichidae) and Lasioderma serricorne (Coleoptera: Ptinidae). J. Stored Prod. Res. 2020, 87, 101610. [Google Scholar] [CrossRef]
- Karahroodi, Z.R.; Moharramipour, S.; Rahbarpour, A. Investigated repellency effect of some essential oils of 17 native medicinal plants on adults Plodia interpunctella. Am.-Eurasian J. Sustain. Agric. 2009, 3, 181–184. [Google Scholar]
- Yang, N.; Li, A.; Wan, F.; Liu, W.; Johnson, D. Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B. Crop Prot. 2010, 29, 1200–1207. [Google Scholar] [CrossRef]
- Barros, F.A.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.; De Souza, R.R.; Gilson, I.K.; Hackbart, H.C.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of encapsulated and non-encapsulated thyme essential oil (Thymus vulgaris L.) in the control of Sitophilus zeamais and its effects on the quality of corn grains throughout storage. Crop Prot. 2022, 153, 105885. [Google Scholar] [CrossRef]
- Bounoua-Fraoucene, S.; Kellouche, A.; Debras, J. Toxicity of Four Essential Oils Against Two Insect Pests of Stored Grains, Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Afr. Entomol. 2019, 27, 344. [Google Scholar] [CrossRef]
- Moharramipour, S.; Taghizadeh, A.; Meshkatalsadat, M.H.; Fathipour, Y.; Talebi, A.A. Repellent Activity and Persistence of Essential Oil Extracted from Prangos acaulis to Three Stored-Product Beetles. Am. -Eurasian J. Sustain. Agric. 2009, 3, 202–204. [Google Scholar]
- Saad, M.M.G.; El-Deeb, D.A.; Abdelgaleil, S.A.M. Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst. Environ. Sci. Pollut. Res. Int. 2019, 26, 6801–6810. [Google Scholar] [CrossRef]
- Huang, T.; Tien, N.; Luo, Y. An in vitro bioassay for the quantitative evaluation of mosquito repellents against Stegomyia aegypti (=Aedes aegypti) mosquitoes using a novel cocktail meal. Med. Vet. Entomol. 2015, 29, 238–244. [Google Scholar] [CrossRef]
- Chaubey, M.K.; Kumar, N. Role of carvacrol and menthone in maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) management. Eur. J. Biol. Res. 2023, 13, 181–190. [Google Scholar]
- Chaubey, M.K. Insecticidal property of terpenes against maize weevil, sitophilus zeamais (motschulsky). J. Biopestic. 2022, 15, 91–102. [Google Scholar] [CrossRef]
- Bachrouch, O.; Nefzi, H.; Belloumi, S.; Horchani-Naifer, K.; Eljazi, J.S.; Hamdi, S.H.; Msaada, K.; Labidi, J.; Abderrabba, M.; Jemaa, J.M.B. Insecticidal effects of two Tunisian diatomaceous earth loaded with Thymus capitatus (L.) Hoffmans and Links as an ecofriendly approach for stored coleopteran pest control. Int. J. Environ. Health Res. 2022, 33, 398–412. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind. Crops Prod. 2019, 134, 26–32. [Google Scholar] [CrossRef]
- López, V.; Pavela, R.; Gómez-Rincón, C.; Les, F.; Bartolucci, F.; Galiffa, V.; Petrelli, R.; Cappellacci, L.; Maggi, F.; Canale, A.; et al. Efficacy of Origanum syriacum Essential Oil against the Mosquito Vector Culex quinquefasciatus and the Gastrointestinal Parasite Anisakis simplex, with Insights on Acetylcholinesterase Inhibition. Molecules 2019, 24, 2563. [Google Scholar] [CrossRef]
- Gaire, S.; Zheng, W.; Scharf, M.E.; Gondhalekar, A.D. Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pestic. Biochem. Physiol. 2021, 175, 104829. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal and repellent activity of selected essential oils against of the pollen beetle, Meligethes aeneus (Fabricius) adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Moutassem, D.; Boubellouta, T.; Bellik, Y.; Rouis, Z.; Kucher, D.E.; Utkina, A.O.; Kucher, O.D.; Mironova, O.A.; Kavhiza, N.J.; Rebouh, N.Y. Insecticidal activity of Thymus pallescens de Noë and Cymbogon citratus essential oils against Sitophilus zeamais and Tribolium castaneum. Sci. Rep. 2024, 14, 13951. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huo, X.; Zhou, X.; Zhao, D.; He, W.; Liu, S.; Liu, H.; Feng, T.; Wang, C. Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval)). Molecules 2017, 22, 1873. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, J.; Jevremović, S.; Kostić, I.; Kostić, M.; Vuleta, A.; Jovanović, S.M.; Jovanović, D.Š. Toxic, Oviposition Deterrent and Oxidative Stress Effects of Thymus vulgaris Essential Oil against Acanthoscelides obtectus. Insects 2020, 11, 563. [Google Scholar] [CrossRef]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Zeitschrift Für Naturforschung C 2020, 75, 179–182. [Google Scholar] [CrossRef]
- Gupta, P.; Preet, S.; Ananya, N.; Singh, N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci. Rep. 2022, 12, 4335. [Google Scholar] [CrossRef] [PubMed]
- Aboelhadid, S.M.; Youssef, I.M.I. Control of red flour beetle (Tribolium castaneum) in feeds and commercial poultry diets via using a blend of clove and lemongrass extracts. Environ. Sci. Pollut. Res. Int. 2021, 28, 30111–30120. [Google Scholar] [CrossRef] [PubMed]
- Sokmen, A.; Abdel-Baki, A.S.; Al-Malki, E.S.; Al-Quraishy, S.; Abdel-Haleem, H.M. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities. J. King Saud. Univ.-Sci. 2020, 32, 2377–2382. [Google Scholar] [CrossRef]
- Obeng-Ofori, D.; Reichmuth, C.H.; Bekele, A.J.; Hassanali, A. Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. Int. J. Pest. Manag. 1998, 44, 203–209. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E.E. Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J. Stored Prod. Res. 2009, 45, 212–214. [Google Scholar] [CrossRef]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res. 2007, 43, 123–128. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Islam, M.S.; Talukder, F.A. Toxic and residual effects of Azadirachta indica, Tagetes erecta and Cynodon dactylon seed extracts and leaf powders towards Tribolium castaneum. J. Plant Dis. Prot. 2005, 112, 594–601. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. J. Sci. Food Agric. J. Sci. Food Agric. 2011, 91, 2277–2283. [Google Scholar] [CrossRef]
- Elbrense, H.; Elmasry, A.M.A.; Seleiman, M.F.; Al-Harbi, M.S.; El-Raheem, A.M.A. Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae? Biology 2021, 10, 999. [Google Scholar] [CrossRef]
- Reddy, D.S.; Srivastava, C.; Paul, B. Residual toxicity of impregnated insecticides on gunnybags against red flour beetle (Tribolium castaneum). Indian J. Agric. Sci. 2005, 75, 532–534. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; 333p. [Google Scholar]
K.I.Experimental | Compounds | %Area |
---|---|---|
926 | α-Thujene | 0.49 |
936 | α-Pinene | 0.54 |
956 | Camphene | 0.25 |
980 | 1-Octen-3-ol | 0.13 |
989 | Myrcene | 1.11 |
1007 | α-Phellandrene | 0.03 |
1018 | α-Terpinene | 0.88 |
1026 | p-Cymene | 7.69 |
1060 | γ-Terpinene | 8.3 |
1074 | cis-Sabinene hydrate | 0.3 |
1088 | Terpinolene | 0.02 |
1100 | Linalool | 0.49 |
1174 | Borneol | 0.95 |
1181 | Terpinen-4-ol | 0.81 |
1195 | α-Terpineol | 0.03 |
1197 | cis-Dihydro carvone | 0.02 |
1290 | Thymol | 5.02 |
1297 | Carvacrol | 71.14 |
1366 | Carvacrol acetate | 0.01 |
1418 | β-Caryophyllene | 1.48 |
1456 | α-Humulene | 0.06 |
99.75 | ||
traces: <0.1% |
Conc. (mg/cm2) | Repellency Percentages (PR) ± SEM | |
---|---|---|
Coridothymus capitatus | Carvacrol | |
DEET Control | 100 ± 0.00 | 100 ± 0.00 |
2 | 72.0 ± 8.0 * | 92.0 ± 4.9 |
1 | 48.0 ± 4.9 *** | 72.0 ± 4.9 *** |
0.5 | 24.0 ± 4.0 *** | 44.0 ± 4.0 *** |
0.25 | 12.0 ± 4.9 *** | 28.0 ± 4.9 *** |
0.125 | 12.0 ± 4.9 *** | 32.0 ± 4.9 *** |
PR 50% | 1.05 (0.792–1.54) a | 0.42 (0.32–0.54) a |
Slope ± SE | 1.13 ± 0.03 | 1.27 ± 0.04 |
Regression equation | y = −0.09 + 1.13x | y = 0.42 + 1.27x |
R2 | 0.72 | 0.69 |
Concentration (mg/L) | Mortality Percent ± SEM | |
---|---|---|
C. capitatus | Carvacrol | |
Control untreated (acetone) | 0 ± 00 | 0 ± 00 |
Control treated with chlorpyrifos 25% (10 mg/L) | 100 ± 00 *** | 100 ± 00 *** |
100 | 36.00 ± 2.45 ***### | 50.0 ± 3.16 ***### |
50 | 20.00 ± 3.16 ***### | 32.0 ± 3.74 ***### |
25 | 14.00 ± 2.45 ***### | 22.0 ± 3.74 ***### |
12.5 | 6.00 ± 2.45 ### | 14.0 ± 2.45 ### |
6.25 | 0 ± 0.00 ### | 6.0 ± 2.45 ### |
LD50 | 168.47 (117.1–304.1) a | 106.5 (77.09–174.02) a |
Slope ± SE | 1.27 ± 0.34 | 1.24 ± 0.25 |
Regression equation | y = −2.93 + 1.27x | y = −2.5 + 1.24x |
R2 | 0.98 | 0.99 |
Concentration (mg/g) | Carvacrol | C. capitatus |
---|---|---|
LD50 | 0.53 (0.42–0.61) a | 0.72 (0.59–0.84) a |
LD90 | 1.17 (1.03–1.41) a | 2.48 (2.02–3.39) a |
Slope ± SE | 2.86 ± 0.5 | 2.21 ± 0.04 |
Regression equation | y = 0.89 + 2.86x | y = 0.33 + 2.21x |
R2 | 0.81 | 0.89 |
Substances | Concentration (mg/g) | Inhibition Rates | Mean Number of Emerged Adults ± SEM |
---|---|---|---|
Control untreated | 0 ± 0.00 | 28.6 ± 0.4 | |
Control treated with chlorpyrifos 25% | (0.01 mg/g) | 100 ± 0.00 *** | 0 ± 0.00 *** |
Coridothymus capitatus | LD90 | 100 ± 0.00 *** | 0± 0.00 *** |
LD50 | 96.00 ± 0.6 *** | 4 ± 0.63 *** | |
Carvacrol | LD90 | 100 ± 0.00 *** | 0 ± 0.00 *** |
LD50 | 98.80 ± 0.49 *** | 1.2 ± 0.49 *** |
Treatment Group | Grain Weight (g) Pre-Treatment | Grain Weight (g) Post- Treatment | Seed Weight Loss % | FDI % |
---|---|---|---|---|
Control untreated | 10.0 ± 0.00 | 7.10 ± 0.06 | 29.02 | 0.00 |
Control treated with chlorpyrifos 25% (0.01 mg/g) | 10.0 ± 0.00 | 10.0 ± 0.00 | 0.00 | 100.00 |
C. capitatus LD90 | 10.0 ± 0.00 | 8.96 ± 0.05 | 10.4 | 64.16 |
Carvacrol LD90 | 10.0 ± 0.00 | 9.44 ± 0.08 | 5.6 | 80.70 |
p value (p< 0.001) | F = 514.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltalawy, H.M.; El-Fayoumi, H.; Aboelhadid, S.M.; Al-Quraishy, S.; El-Mallah, A.M.; Tunali, F.; Sokmen, A.; Daferera, D.; Abdel-Baki, A.-A.S. Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle. Molecules 2024, 29, 4255. https://doi.org/10.3390/molecules29174255
Eltalawy HM, El-Fayoumi H, Aboelhadid SM, Al-Quraishy S, El-Mallah AM, Tunali F, Sokmen A, Daferera D, Abdel-Baki A-AS. Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle. Molecules. 2024; 29(17):4255. https://doi.org/10.3390/molecules29174255
Chicago/Turabian StyleEltalawy, Hassan M., Huda El-Fayoumi, Shawky M. Aboelhadid, Saleh Al-Quraishy, Almahy M. El-Mallah, Fatma Tunali, Atalay Sokmen, Dimitra Daferera, and Abdel-Azeem S. Abdel-Baki. 2024. "Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle" Molecules 29, no. 17: 4255. https://doi.org/10.3390/molecules29174255
APA StyleEltalawy, H. M., El-Fayoumi, H., Aboelhadid, S. M., Al-Quraishy, S., El-Mallah, A. M., Tunali, F., Sokmen, A., Daferera, D., & Abdel-Baki, A. -A. S. (2024). Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle. Molecules, 29(17), 4255. https://doi.org/10.3390/molecules29174255