Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar
Abstract
:1. Introduction
2. Results
2.1. Color and Color Intensity
2.2. The Melissopalynological Analysis
2.3. The Physicochemical Analysis
2.3.1. Free Acidity Content
2.3.2. pH Values
2.3.3. Honey Moisture Content
2.3.4. Soluble Solids Values (°Brix)
2.3.5. Reducing Sugars Content
2.3.6. Apparent Sucrose Content
2.4. Antioxidant Activity and Determination of Bioactive Compounds
2.4.1. Total Polyphenols Content
2.4.2. Total Flavonoid Content
2.4.3. Total Flavanol Content
2.4.4. 1,1-Difenil-2-picrilhidrazil (DPPH)
2.5. GC-MS Analyses
3. Discussion
4. Materials and Methods
4.1. Honey Samples
4.2. Color Analysis
4.3. Melissopalynological Analysis
4.4. Physicochemical Analysis
4.4.1. Determination of Free Acidity
4.4.2. Determination of pH
4.4.3. Soluble Solids (°Brix)
4.4.4. Moisture Determination
4.4.5. Reducing Sugars
4.4.6. Apparent Sucrose
4.5. Determination of Total Phenolic Compounds and Antioxidant Capacity
4.5.1. Total Polyphenols Content
4.5.2. Total Flavonoid Content
4.5.3. Total Flavanol Content
4.5.4. DPPH Assay
4.6. Honey Extracts for GC-MS
4.7. Gas Chromatography Analysis (GC-MS)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaerjani, W.M.A.; Mohammed, M.E.A. Impact of floral and geographical origins on honey quality parameters in Saudi Arabian regions. Sci. Rep. 2024, 14, 8720. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.J.; Kingston, J.M.; Lee, A.; Holway, D.A.; Kohn, J.R. Non-native honey bees disproportionately dominate the most abundant floral resources in a biodiversity hotspot. Proc. Biol. Sci. 2019, 286, 20182901. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations. Faostat. 2021. Available online: https://www.fao.org/statistics/en (accessed on 13 July 2024).
- ABEMEL—Associação Brasileira dos Exportadores de Mel. Available online: https://ciorganicos.com.br/noticia-tag/abemel-associacao-brasileira-dos-exportadores-de-mel (accessed on 1 July 2024).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Pecuária Municipal. IBGE. 2022. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html (accessed on 28 June 2024).
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Brahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: Na Insight into its Molecular Mechanisms of action. Oxid. Med. Cell Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Amessis-Ouchemoukh, N.; Birinci, C.; Yahiaoui, S.; Kolayli, S.; Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Ouchemoukh, S. Phenolic compounds and antioxidant and antibacterial activities of Algerian honeys. Food Biosci. 2021, 42, 101070. [Google Scholar] [CrossRef]
- Wang, L.; Ning, F.; Liu, T.; Huang, X.; Zhang, J.; Liu, Y.; Luo, L. Physicochemical properties, chemical composition, and antioxidant activity of Dendropanax dentiger honey. LWT 2021, 147, 111693. [Google Scholar] [CrossRef]
- Afonso, M.A.; Gonçalves, J.; Luís, Â.; Gallardo, E.; Duarte, A.P. Evaluation of the in vitro wound-healing activity and phytochemical characterization of propolis and honey. Appl. Sci. 2020, 10, 1845. [Google Scholar] [CrossRef]
- Rizelio, V.M.; Tenfen, L.; Gonzaga, L.V.; Borges, G.S.C.; Biluca, F.C.; Schulz, M.; Costa, A.C.O.; Fett, R. Physicochemical and bioactive properties of Southern Brazilian Apis mellifera L. honeys. J. Apic. Res. 2020, 59, 910–916. [Google Scholar] [CrossRef]
- Muto, N.A.; Leite, R.D.S.; Pereira, D.S.; Rogez, H.L.G.; Venturieri, G.C. Impact of the introduction of stingless bee colonies (Scaptotrigona aff. postica) on the productivity of acai (Euterpe oleracea). Rev. Verde 2020, 15, 265–273. [Google Scholar] [CrossRef]
- Venturieri, G.R.; Venturieri, G.C.; Venturieri, G.A. Suggested methodology to evaluate the effectiveness of artificial introduction of stingless beehives in the productivity of assai palm tree orchards. Biota Amaz. Macapá 2016, 6, 107–108. [Google Scholar] [CrossRef]
- Viteri, R.; Zacconi, F.; Montenegro, G.; Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 2021, 86, 1552–1582. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- BRASIL. Ministério da Agricultura e do Abastecimento. Instrução Normativa n° 11, de 20 de Outubro de 2000. Regulamento Técnico de Identidade e Qualidade do Mel. Diário Oficial [da] República Federativa do Brasil Brasília, DF, 23, out. 2000. Available online: https://www.gov.br/agricultura/pt-br/assuntos/defesa-agropecuaria/suasa/regulamentos-tecnicos-de-identidade-e-qualidade-de-produtos-de-origem-animal-1/IN11de2000.pdf (accessed on 1 June 2024).
- Welke, J.E.; Reginatto, S.; Ferreira, D.; Vicenzi, R.; Soares, J.M. Caracterização físico-química de méis de Apis mellifera L. da região noroeste do Estado do Rio Grande do Sul. Cienc. Rural 2008, 38, 1737–1741. [Google Scholar] [CrossRef]
- Viciniescki, R.P.; Cordeiro, S.G.; Oliveira, E.C. Detecção de adulteração e caracterização físico-química de mel de abelha de pequenos produtores do interior gaúcho. Rev. Destaques Acadêmicos 2018, 10, 326–335. [Google Scholar] [CrossRef]
- Dantas, J.D.; Santos, S.C.L.; Santos, T.C.L.; da Silva, A.B.; Carvalho, L.X.M. Physico-chemical analysis of bee honey sold in the municipality of Frei Martinho—PB. Res. Soc. Dev. 2022, 11, e320111032638. [Google Scholar] [CrossRef]
- Dos Santos Picanço, Y.; Oliveira, S.S.; Almeida, M.; Fabrizia, S.O.; Pereira, F.S.O.E.J.; dos Santos, G.C. Análise de atividade de água e umidade na qualidade do mel produzido em comunidades da reserva extrativista tapajós—Arapiuns, Santarém, Pará. Rev. Agroecossistemas 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Júnior, A.L.M.; Barreto, A.L.H.; Pereira, F.M.; Sattler, A.; Silva, D.A.; Pereira, L.A.; Blochtein, B. Caracterização físico-química e palinológica de mel de Apis mellifera, obtido a partir de florada de canola, de municípios do Rio Grande do Sul, Brasil. Rev. Cient. Intellett. 2023, 7, 108–126. [Google Scholar]
- Martelli, S.M.M.; Imamura, J.L.A.; Silva, G.S.; Aranha, C.P.M.; Altemio, A.D.C.; Batistela, V.F.S. Caracterização física e química de méis de abelha-europeia (Apis mellifera) produzidos no estado de Mato Grosso do Sul. Peer Rev. 2023, 5, 333–344. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Ganesan, T.; Subban, M.; Christopher Leslee, D.B.; Kuppannan, S.B.; Seedevi, P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conv. Biorefinery 2024, 14, 14547–14558. [Google Scholar] [CrossRef]
- Liu, R.; Tu, M.; Xue, J.; Xiao, B.; Li, J.; Liang, L. Oleic acid induces lipogenesis and NLRP3 inflammasome activation in organotypic mouse meibomian gland and human meibomian gland epithelial cells. Exp. Eye Res. 2024, 241, 109851. [Google Scholar] [CrossRef]
- Kumari, R.; Mishra, R.C.; Sheoran, R.; Yadav, J.P. Fractionation of antimicrobial compounds from acacia nilotica twig extract against oral pathogens. Biointerface Res. Appl. Chem. 2020, 10, 7097–7105. [Google Scholar] [CrossRef]
- Vanitha, V.; Vijayakumar, S.; Nilavukkarasi, M.; Punitha, V.N.; Vidhya, E.; Praseetha, P.K. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops Prod. 2020, 154, 112748. [Google Scholar] [CrossRef]
- Skanda, S.; Vijayakumar, B.S. Antioxidant and Anti-inflammatory Metabolites of a Soil-Derived Fungus Aspergillus arcoverdensis SSSIHL-01. Curr. Microbiol. 2021, 78, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Q.; Li, G.; Lou, J.; Chen, X.; He, Y.; Peng, W.X. Pyrolysis of Aesculus chinensis Bunge Leaves as for Extracted Bio-Oil Material. Polymers 2022, 14, 5003. [Google Scholar] [CrossRef]
- Filip, S.; Đurović, S.; Blagojević, S.; Tomić, A.; Ranitović, A.; Gašić, U.; Tešić, Ž.; Zeković, Z. Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts. Arch. Pharm. 2021, 354, 2000195. [Google Scholar] [CrossRef]
- Mohamad, O.A.A.; Li, L.; Ma, J.B.; Hatab, S.; Xu, L.; Guo, J.W.; Rasulov, B.A.; Liu, Y.H.; Hedlund, B.P.; Li, W.J. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus Against Verticillium dahliae. Front. Microbiol. 2018, 9, 924. [Google Scholar] [CrossRef]
- Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. J. Evid. Based. Complement. Altern. Med. 2017, 2017, 1517683. [Google Scholar] [CrossRef]
- Ibnouf, E.O.; Aldawsari, M.F.; Ali Waggiallah, H. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J. Biol. Sci. 2022, 29, 103352. [Google Scholar] [CrossRef]
- Sianipar, N.F.; Purnamaningsih, R. Enhancement of the contents of anticancer bioactive compounds in mutant clones of rodent tuber (Typhonium flagelliforme Lodd.) based on GC-MS analysis. Pertanika J. Trop. Agric. Sci. 2018, 41, 305–320. [Google Scholar]
- Guo, T.; Lin, Q.; Li, X.; Nie, Y.; Wang, L.; Shi, L.; Xu, W.; Hu, T.; Guo, T.; Luo, F. Octacosanol Attenuates Inflammation in Both RAW264.7 Macrophages and a Mouse Model of Colitis. J. Agric. Food Chem. 2017, 65, 3647–3658. [Google Scholar] [CrossRef]
- Igwe, O.U.; Donatus, E.O. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the seeds of Brachystegia eurycoma (HARMS). Asian J. Plant Sci. Res. 2013, 3, 47–54. [Google Scholar]
- Castillo, C.; Maisonnasse, A.; le Conte, Y.; Plettner, E. Seasonal variation in the titers and biosynthesis of the primer pheromone ethyl oleate in honey bees. J. Insect Physiol. 2012, 58, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Zenkov, N.K.; Menshchikova, E.B.; Kandalintseva, N.V.; Oleynik, A.S.; Prosenko, A.E.; Gusachenko, O.N.; Shklyaeva, O.A.; Vavilin, V.A.; Lyakhovich, V.V. Antioxidant and anti-inflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry 2007, 72, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ali, A.; Husain Warsi, M.; Ahmad, W.; Tahir, A. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef]
- Velayutham, P.; Karthi, C. GC-MS profile of in vivo, in vitro and fungal elicited in vitro leaves of Hybanthus enneaspermus (L.) F. Muell. Int. J. Pharm. Pharm. Sci. 2015, 7, 260–267. [Google Scholar]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Hegazi, A.G.; Abd El-Hady, F.K. Influence of honey on the suppression of human low density lipoprotein (LDL) peroxidation (in vitro). J. Evid. Based. Complement. Altern. Med. 2009, 6, 113–121. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, S.; Dhiman, S.; Singh, P.P.; Bhatia, G.; Thakur, S.; Tuli, H.S.; Sharma, U.; Kumar, S.; Almutary, A.G.; et al. Targeting Akt/NF-κB/p53 Pathway and Apoptosis Inducing Potential of 1,2-Benzenedicarboxylic Acid, Bis (2-Methyl Propyl) Ester Isolated from Onosma bracteata Wall. against Human Osteosarcoma (MG-63) Cells. Molecules 2022, 27, 3478. [Google Scholar] [CrossRef]
- Asong, J.A.; Amoo, S.O.; McGaw, L.J.; Nkadimeng, S.M.; Aremu, A.O.; Otang-Mbeng, W. Antimicrobial activity, antioxidant potential, cytotoxicity and phytochemical profiling of four plants locally used against skin diseases. Plants 2019, 8, 350. [Google Scholar] [CrossRef]
- Terzi, E.; Tahiluddin, A.B.; Kadak, A.E. Evaluation of the antibacterial activity of cultivated Caucasian whortleberry (Vaccinium arctostaphylos L.) against fish pathogens. Fish. Aquat. Life 2023, 31, 79–86. [Google Scholar] [CrossRef]
- Maieves, H.A.; Züge, L.C.B.; Teixeira, G.L.; Cámara, M.; Ribani, R.H.; Sánchez-Mata, M.C. Chemical Properties, Rheological Behavior, and Melissopalynological Analysis of Selected Brazilian Honeys from Hovenia dulcis Flowering. Braz. Arch. Biol. Technol. 2020, 63, e20190743. [Google Scholar] [CrossRef]
- Viana, L.F.; Homma, A.K.O.; Menezes, A.J.E.A.; Santos, J.C.; Neto Farias, J.T.; Pena, H.W.A. Análise econômica do cultivo de açaizeiro irrigado no nordeste paraense. Rev. Terceira Margem Amaz. 2021, 7, 155–169. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Conteúdo de ácidos fenólicos como um marcador de variedades de mel polonês e relação com variáveis selecionadas que influenciam a qualidade do mel. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef]
- Da Silva, I.C.; Conceição, E.O.A.; Pereira, D.S.; Rogez, H.; Muto, N.A. Evaluation of the Antimicrobial Capacity of Bacteria Isolated from Stingless Bee (Scaototrigona aff. postica) Honey Cultivated in Açai (Euterpe oleracea) Monoculture. Antibiotics 2023, 12, 223. [Google Scholar] [CrossRef]
- Abadio Finco, F.D.B.; Moura, L.L.; Silva, I.G. Propriedades físicas e químicas do mel de Apis mellifera L. Food Sci. Technol. 2010, 30, 706–712. [Google Scholar] [CrossRef]
- Meireles, S.; Cançado, I.A.C. Mel: Parâmetros de qualidade e suas implicações para a saúde. Rev. Synth. 2013, 4, 207–219. [Google Scholar]
- Ferreira, S. Caracterização e Avaliação dos Compostos Bioativos do Mel da Abelha Apis Mellifera Obtido do Néctar Floral de Açaí (Euterpe oleracea). In Trabalho de Conclusão de Curso (TCC); Faculdade de Biotecnologia, Universidade Federal do Pará: Belém, Brasil, 2023; p. 41. [Google Scholar]
- Zamani-Garmsiri, F.; Emamgholipour, S.; Fard, S.R.; Ghasempour, G.; Ahvazi, R.J.; Meshkani, R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother. Res. 2022, 36, 415–432. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods 2020, 66, 103829. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, J.; Mármol-Rojas, C.; Galán-Madruga, D.; Cáceres, J.O. Honey polyphenols: Regulators of human microbiota and health. Food Funct. 2023, 14, 602–620. [Google Scholar] [CrossRef]
- Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine 2021, 86, 153170. [Google Scholar] [CrossRef]
- Moreni, A.; Cabrera, M.C.; Cracco, P.; Cadenazzi, M.; Pirotti, F.; Santos, E. Teor de oligoelementos e capacidade antioxidante em méis de regiões fitogeo-gráficas protegidas do Uruguai. Agrocienc. Urug. 2023, 27. [Google Scholar] [CrossRef]
- Pereira, J.R.; Campos, A.N.D.R.; De Oliveira, F.C.; Silva, V.R.O.; David, G.F.; Da Silva, J.G.; Nascimento, W.W.G.; Silva, M.H.L.; Denadai, A.M.L. Physical-chemical characterization of commercial honeys from Minas Gerais, Brazil. Food Biosci. 2020, 36, 100644. [Google Scholar] [CrossRef]
- Gardoni, L.C.D.P.; Santana, R.M.; Brito, J.C.M.; Ramos, L.X.; Araújo, L.A.; Bastos, E.M.A.F.; Calaça, P. Content of phenolic compounds in monofloral aroeira honey and in floral nectary tissue. Pesqui. Agropecuária Bras. 2022, 57, e02802. [Google Scholar] [CrossRef]
- Royo, V.D.A.; De Oliveira, D.A.; Veloso, P.H.F.; Sacramento, V.D.M.; Olimpio, E.L.A.; De Souza, L.F.; Pires, N.D.C.; Martins, C.H.G.; Santiago, M.B.; Alves, T.M.D.A.; et al. Physicochemical profile, antioxidant and antimicrobial activities of honeys produced in Minas Gerais (Brazil). Antibiotics 2022, 11, 1429. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Q.; Zhao, X.; Shi, J. The in vitro anti-inflammatory activities of galangin and quercetin towards the LPS-injured rat intestinal epithelial (IEC-6) cells as affected by heat treatment. Molecules 2021, 26, 7495. [Google Scholar] [CrossRef]
- Barrett, A.H.; Farhadi, N.F.; Smith, T.J. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins—A review of efficacy and mechanisms. LWT 2018, 87, 394–399. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Y.; Li, J.; Zheng, W.; Gong, B.; Jin, X.; Zhou, X.; Yang, H.; Yang, F.; Guo, J.; et al. Changes in health-promoting metabolites associated with high-altitude adaptation in honey. Food Chem. 2024, 449, 139246. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Martins, G.R.; Mattos, M.M.G.; Nascimento, F.M.; Brum, F.L.; Mohana-Borges, R.; Figueiredo, N.G.; Neto, D.F.M.; Domont, G.B.; Nogueira, F.C.S.; Campos, F.D.A.D.P.; et al. Phenolic profile and antioxidant properties in extracts of developing Açaí (Euterpe oleracea Mart.) seeds. J. Agric. Food Chem. 2022, 70, 16218–16228. [Google Scholar] [CrossRef]
- Pena Júnior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; Junior, A.F.D.M.; Brandão, M.M.; De Oliveira, D.A.; De Souza, L.F.; Silva, J.C.; et al. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). PLoS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef]
- Ismaeel, A.; McDermott, M.M.; Joshi, J.K.; Sturgis, J.C.; Zhang, D.; Ho, K.J.; Sufit, R.; Ferrucci, L.; Peterson, C.A.; Kosmac, K. Cocoa flavanols, Nrf2 activation, and oxidative stress in peripheral artery disease: Mechanistic findings in muscle based on outcomes from a randomized trial. Am. J. Physiol. Cell Physiol. 2024, 326, C589–C605. [Google Scholar] [CrossRef] [PubMed]
- Abdelrazek, D.A.; Ibrahim, M.A.; Hassan, N.H.; Hassanen, E.I.; Farroh, K.Y.; Abass, H.I. Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: Role of Nrf2/HO-1/Keap-1 signaling pathway. Neurotoxicology 2021, 98, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.R.N.; Frazão, D.R.; Ferreira, R.D.O.; Mendes, P.F.S.; Baia-da-Silva, D.C.; Souza-Monteiro, D.; Bittencourt, L.O.; De Moura, J.D.M.; Perdigão, J.M.; Teixeira, B.J.B.; et al. Açaí (Euterpe oleracea Mart.) attenuates oxidative stress and alveolar bone damage in experimental periodontitis in rats. Antioxidants 2022, 11, 1902. [Google Scholar] [CrossRef] [PubMed]
- Alaebo, P.O.; Umeh, V.A.; Njoku, G.C.; Ezennaya, I.E.; Ayadike, N.N.; James, U.A.; Ezeh, C.J.; Paschal, U. Antioxidant and nephroprotective effects of honey in alloxan-induced diabetic rats. J. Appl. Life Sci. Int. 2022, 25, 26–32. [Google Scholar] [CrossRef]
- Zawawi, N.; Chong, P.J.; Tom, N.N.M.; Anuar, N.S.S.; Mohammad, S.M.; Ismail, N.; Jusoh, A.Z. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types. Molecules 2021, 26, 4399. [Google Scholar] [CrossRef]
- Terzo, S.; Mulè, F.; Amato, A. Honey and obesity-related dysfunctions: A summary on health benefits. J. Nutr. Biochem. 2020, 82, 108401. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 523, 185–191. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Methods of analysis of honey. J. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Erdtman, G. The acetolysis method. Svensk. Bot. Tidskr. 1960, 54, 516–564. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 16th ed.; rev.4; AOAC: Washington, DC, USA, 1998; 1170p. [Google Scholar]
- Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos, 4th ed.; 1° Edição Digital: Lisbon, Portugal, 2008; 1020p. [Google Scholar]
- Martínez, A.; Vergara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef]
- Ghafar, M.F.; Prasad, K.N.; Weng, K.K.; Ismail, A. Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. Afr. J. Biotechnol. 2010, 9, 326–330. [Google Scholar]
- Wallace, T.C.; Giusti, M.M. Evaluation of parameters that affect the 4-dimethylaminocinnamaldehyde assay for flavanols and proanthocyanidins. Food Sci. 2010, 75, C619–C625. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef]
- Galgowski, C.; Frare, S.P.; Rau, M.; Alberton, M.D.; Althoff, S.; Guedes, A.; Cordova, C.M.M. Molicute anti-adhesive and Growth inhibition properties of the methanolic extract of propolis from the brazilian native bee Melipona quadrifasciata. Chem. Biodivers. 2020, 18, e2000711. [Google Scholar] [CrossRef]
- Jamovi. The Jamovi Project. (Version 2.3) [Computer Software]. 2022. Available online: https://www.jamovi.org (accessed on 7 July 2024).
Honeys | Color (mm Pfund) | Color Range | Intensity (mAU) |
---|---|---|---|
AH1 | 380.0 | Dark amber | 2.361 |
AH2 | 72.2 | Amber | 0.953 |
AH3 | 90.3 | Amber | 1.463 |
Aroeira | 223.3 | Dark amber | 1.093 |
Mangue | 61.7 | Light amber | 0.244 |
Cipó-Uva | 42.2 | Extra amber | 0.111 |
Timbó | 72.0 nm | Light amber | 0.208 |
Honeys | Free Acidity (mEq/kg) | pH | Humidity (g/100 g) | °Brix (g/g) | Reducing Sugars (g/100 g) | Apparent Sucrose (g/100 g) |
---|---|---|---|---|---|---|
AH1 | 73.60 ± 2.9 a | 3.35 ± 0.0 | 19.82 ± 0.0 | 78.50 ± 0.0 | 62.76 ± 0.2 | 5.57 ± 0.3 |
AH2 | 63.03 ± 0.2 a | 3.54 ± 1.7 | 20.70 ± 0.0 b | 77.67 ± 0.0 | 64.26 ± 0.6 | 6.21 ± 0.3 b |
AH3 | 75.97 ± 0.8 a | 3.44 ± 0.0 | 19.5 ± 0.0 | 78.80 ± 0.1 | 64.49 ± 0.4 | 4.59 ± 0.0 |
Aroeira | 30.74 ± 0.0 | 4.70 ± 0.1 | 16.50 ± 0.0 | 81.77 ± 0.2 | 62.26 ± 0.5 | 5.60 ± 0.1 |
Mangue | 12.31 ± 0.2 | 4.20 ± 0.0 | 19.40 ± 0.0 | 79.00 ± 0.0 | 71.08 ± 0.3 | 0.74 ± 0.0 |
Cipó-Uva | 14.62 ± 0.0 | 3.87 ± 0.0 | 16.50 ± 0.0 | 81.77 ± 0.0 | 67.75 ± 1.1 | 3.53 ± 0.1 |
Timbó | 9.19 ± 0.2 | 4.23 ± 0.0 | 17.30 ± 0.0 | 81.03 ± 0.0 | 68.06 ± 0.4 | 1.38 ± 0.0 |
Honeys | Polyphenol Content (mg eq./100 g) | Flavonoids Content (mg eq./100 g) | Flavanol Content (mg eq./100 g) | DPPH (µmol eq./100 mL) |
---|---|---|---|---|
AH1 | 291.84 ± 8.1 c | 106.05 ± 5.3 c | 1.95 ± 0.1 | 396.55 ± 10.4 c |
AH2 | 79.49 ± 2.4 d | 9.71 ± 0.3 | 1.21 ± 0.1 | 114.13 ± 3.2 d |
AH3 | 118.20 ± 5.2 c | 14.36 ± 0.9 e | 1.27 ± 0.1 | 157.81 ± 6.9 c |
Aroeira | 100.05 ± 0.8 | 30.24 ± 0.9 | 4.20 ± 0.1 | 98.58 ± 1.2 |
Mangue | 32.24 ± 0.8 | 7.43 ± 0.6 | ND | 15.05 ± 0.6 |
Cipó-Uva | 25.15 ± 0.7 | 3.69 ± 0.1 | ND | 23.06 ± 0.9 |
Timbó | 34.39 ± 2.3 | 9.67 ± 0.2 | ND | 14.07 ± 0.7 |
Peak# | RT (min) | Fragments (%) | Name of Compound | Molecular Formula | MW (g/mol) | Ref. |
---|---|---|---|---|---|---|
1 | 8.82 | 57 (100); 41 (78.51); 43 (66.4) | Nonanal | C9H18O | 142 | - |
2 | 12.20 | 97 (100); 41 (71.2); 126 (49.4) | 5-Hydroxymethylfurfural | C6H6O3 | 126 | [22] |
3 | 18.81 | 55 (100); 73 (83.1); 41(78.1) | 9-Oxononanoic acid | C9H16O3 | 172 | - |
4 | 29.45 | 73 (100); 43 (89.0); 60 (63.9) | Palmitic acid | C16H32O2 | 256 | [23] |
5 | 32.73 | 55 (100); 69 (83.9); 41 (83.5) | Oleic Acid | C18H34O2 | 282 | [24] |
6 | 33.15 | 55 (100); 43 (96.0); 73 (92.6) | Stearic acid | C18H36O2 | 284 | - |
7 | 35.28 | 83 (100); 69 (92.0); 57 (60.4) | Behenic alcohol | C22H46O | 326 | [25] |
8 | 35.50 | 57 (100); 71 (79.9); 43 (46.7) | Heneicosane | C21H44 | 296 | [26] |
9 | 36.56 | - | No identified | - | - | - |
10 | 38.60 | 57 (100); 83 (88.4); 97 (58.7) | Heptacosanol | C27H56O | 396 | [27] |
11 | 38.74 | 57 (100); 71 (82.5); 43 (23.7) | Eicosane | C20H42 | 282 | - |
12 | 39.15 | 149 (100); 167 (29.4); 57 (54.7) | Bis(2-ethylhexyl) phthalate | C24H38O4 | 390 | - |
13 | 40.32 | 57 (100); 71 (77.9); 43 (81.5) | Batilol | C21H44O3 | 344 | [28] |
14 | 41.67 | 83 (100); 97 (96.8); 69 (54.8) | Heptacosanol | C27H56O | 396 | [27] |
15 | 41.75 | 57 (100); 71 (84.2); 85 (57.9) | Pentacosane | C25H52 | 352 | [29] |
16 | 43.12 | 185 (100); 57 (44.7); 70 (42.1 | Decanedioic acid,bis(2-ethylhexyl)ester | C26H50O4 | 426 | [30] |
17 | 43.18 | 57 (100); 71 (83.7); 85 (63.7) | Tetracontane | C40H82 | 562 | [31] |
18 | 43.35 | 57 (100); 71 (62.6); 85 (49.4) | Batilol | C21H44O3 | 344 | [28] |
19 | 44.42 | 57 (100); 97 (89.8); 83 (82.7) | Heptacosanol | C27H56O | 396 | [27] |
20 | 44.55 | 57 (100); 71 (81.9); 85 (57.9) | Tetratetracontane | C44H90 | 618 | [32] |
21 | 45.96 | 57 (100); 71 (83.7); 85 (63.7) | Tetracontane | C40H82 | 5632 | [31] |
22 | 47.61 | 57 (100); 71 (83.7); 85 (63.7) | Tetracontane | C40H82 | 562 | [31] |
23 | 49.47 | 55 (100); 314(94.2); 81(80.1) | Fucosterol | C29H48O | 412 | - |
24 | 49.63 | 57 (100); 71 (85.0); 71 (84.2) | Campesterol | C28H48O | 400 | - |
25 | 51.65 | 43 (100); 107 (98.4); 95 (87.3) | Sitosterol | C29H50O | 414 | [33] |
Compound | Molecular Formula | Honey | Function | Ref. |
---|---|---|---|---|
Oleic Acid | C18H34O2 | AH1, AH3 Timbó, Aroeira and Mangue | anti-inflammatory | [24] |
5-Hydroxymethylfurfural | C6H6O3 | AH1, AH3 | quality indicator | [22] |
n-Hexadecanoic acid | C16H32O2 | AH1, AH2 Timbó, Aroeira and Mangue | Antioxidant and antibacterial | [23] |
Batilol | C21H44O3 | AH1, AH3 and Timbó | antitumor | [28] |
n-Tetracosanol-1 | C24H50O | - | - | - |
Pentacosane | C25H52 | AH1, Mangue, Timbó | antimicrobial | [29] |
Heptacosanol | C27H56O | AH1, AH2 Mangue, Timbó and Aroeira | antioxidant | [27] |
Octacosanol | C28H58O | AH3 and Aroeira | anti-inflammatory | [34] |
9,12-Octadecadienoic acid, ethyl ester | C20H36O2 | Mangue | antibacterial | [35] |
Ethyl Oleate | C20H38O2 | Mangue, AH3 | Antioxidant | [36,37] |
Heneicosane | C21H44 | AH3, Mangue, Timbó and Aroeira | antimicrobial | [26] |
2-Methylhexacosane | C27H56 | AH2, AH3, Mangue and Timbó | antitumor | [38] |
Behenic alcohol | C22H46O | AH1, AH3, Timbó, Mangue and Aroeira | antibacterial | [25] |
Oxirane, [(dodecyloxy)methyl]- | C15H30O2 | Mangue, Timbó and Aroeira | antifungal | [39] |
Tetratetracontane | C44H90 | Mangue, Timbó and Aroeira | antibacterial | [32] |
Sitosterol | C29H50O | AH3, Mangue, Timbó, | antitumor | [33] |
Hexadecanoic acid, ethyl ester | C18H36O2 | Cipó-uva, AH3 | antioxidant | [40] |
Tetracontane | C40H82 | AH1, Timbó, Cipó-uva, Aroeira | antimicrobial | [32] |
Linoleic acid Ethyl ester | C20H36O2 | Cipó-uva | antibacterial | [35] |
beta-amyrin acetate | C32H52O2 | AH2 | anti-inflammatory, anticonvulsant and antibacterial | - |
Octadecanoic acid, ethyl ester | C20H38O2 | Cipó-uva | Antioxidant | [41] |
Lupeol acetate | C32H52O2 | AH2 | Anti-inflammatory | - |
1,2-Benzenedicarboxylic acid, bis(2-methyl) | C16H18O4 | AH3, Timbó and Mangue | - | [42] |
Methyl 9-octadecenoate | C19H36O2 | AH2 and AH3 | Antioxidant, Anti-inflammatory and antibacterial | - |
Dotriacontane | C32H66 | AH2 | antioxidant | [43] |
17-pentatriacontene | C35H70 | Mangue | anti-inflammatory | - |
Decanedioic acid, bis(2-ethylhexyl) ester | C26H50O4 | AH1, AH3, Timbó and Mangue | antimicrobial | [30] |
9-t-Butyltricyclo [4.2.1.1(2,5)]decane-9,10-diol | C14H24O2 | Timbó | antibacterial | [44] |
Spiro[bicyclo [3.1.1]heptane-2,2′-oxirane] | C8H12O | Mangue | anti-inflammatory, antimicrobial, and antioxidant | - |
1-Hexacosanol | C26H54O | Timbó, Mangue, Aroeira, | antioxidant | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, S.R.L.; Araújo, J.L.; Franco, M.S.; de Souza, C.M.M.; Pereira, D.S.; da Rocha, C.Q.; Rogez, H.L.G.; Muto, N.A. Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar. Molecules 2024, 29, 4567. https://doi.org/10.3390/molecules29194567
Ferreira SRL, Araújo JL, Franco MS, de Souza CMM, Pereira DS, da Rocha CQ, Rogez HLG, Muto NA. Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar. Molecules. 2024; 29(19):4567. https://doi.org/10.3390/molecules29194567
Chicago/Turabian StyleFerreira, Sara R. L., Jéssica L. Araújo, Marly S. Franco, Camilla M. M. de Souza, Daniel S. Pereira, Cláudia Q. da Rocha, Hervé L. G. Rogez, and Nilton A. Muto. 2024. "Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar" Molecules 29, no. 19: 4567. https://doi.org/10.3390/molecules29194567
APA StyleFerreira, S. R. L., Araújo, J. L., Franco, M. S., de Souza, C. M. M., Pereira, D. S., da Rocha, C. Q., Rogez, H. L. G., & Muto, N. A. (2024). Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar. Molecules, 29(19), 4567. https://doi.org/10.3390/molecules29194567