Effect of Surface Anions Adsorbed by Rutile TiO2 (001) on Photocatalytic Nitrogen Reduction Reaction: A Density Functional Theory Calculation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption Models and Adsorption Energies
2.2. Electronic Structure
2.3. Optical Absorption
2.4. NRR Gibbs Free Energy Pathway
3. Computational Methods and Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, W.; Shi, L.; Li, Z.; Liu, D.; Liang, Y.; Han, B.; Qi, J.; Li, Y. Recent progress on the preparation and application in photocatalysis of 2D MXene-based materials. Mater. Today Energy 2024, 41, 101547. [Google Scholar] [CrossRef]
- Aldosari, O.F.; Hussain, I. Unlocking the potential of TiO2-based photocatalysts for green hydrogen energy through water-splitting: Recent advances, future perspectives and techno feasibility assessment. Int. J. Hydrogen Energy 2024, 59, 958–981. [Google Scholar] [CrossRef]
- Meng, D.; Ruan, X.; Xu, M.; Jiao, D.; Fang, G.; Qiu, Y.; Zhang, Y.; Zhang, H.; Ravi, S.K.; Cui, X. An S-scheme artificial photosynthetic system with H-TiO2/g-C3N4 heterojunction coupled with MXene boosts solar H2 evolution. J. Mater. Sci. Technol. 2025, 211, 22–29. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew. Sustain. Energy Rev. 2022, 156, 111980. [Google Scholar] [CrossRef]
- Imai, K.; Fukushima, T.; Kobayashi, H.; Higashimoto, S. Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy. Appl. Catal. B Environ. 2024, 346, 123745. [Google Scholar] [CrossRef]
- Ren, Y.; Han, Y.; Li, Z.; Liu, X.; Zhu, S.; Liang, Y.; Yeung, K.W.K.; Wu, S. Ce and Er Co-doped TiO2 for rapid bacteria-killing using visible light. Bioact. Mater. 2020, 5, 201–209. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Ma, Y.; Zhu, D.; Li, T.; Wang, J. Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 2020, 41, 95–102. [Google Scholar] [CrossRef]
- Nakada, A.; Nishioka, S.; Vequizo, J.J.M.; Muraoka, K.; Kanazawa, T.; Yamakata, A.; Nozawa, S.; Kumagai, H.; Adachi, S.; Ishitani, O.; et al. Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. J. Mater. Chem. A 2017, 5, 11710–11719. [Google Scholar] [CrossRef]
- Marien, C.B.D.; Cottineau, T.; Robert, D.; Drogui, P. TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat. Appl. Catal. B Environ. 2016, 194, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Ma, T.; Zhang, Z.; Zhang, X.; Jiang, Y.; Pan, Z.; Wen, F.; Kang, P.; Zhang, P. Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities. Desalination 2006, 195, 294–305. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, Z.; Li, Y.; Dong, L.; Zhao, Y.; Zhang, J. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2018, 36, 24–47. [Google Scholar] [CrossRef]
- Han, Z.; Choi, C.; Hong, S.; Wu, T.-S.; Soo, Y.-L.; Jung, Y.; Qiu, J.; Sun, Z. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B Environ. 2019, 257, 117896. [Google Scholar] [CrossRef]
- Padayachee, D.; Mahomed, A.S.; Singh, S.; Friedrich, H.B. Effect of the TiO2 Anatase/Rutile Ratio and Interface for the Oxidative Activation of n-Octane. ACS Catal. 2020, 10, 2211–2220. [Google Scholar] [CrossRef]
- Mahmood Katun, M.; Kadzutu-Sithole, R.; Moloto, N.; Nyamupangedengu, C.; Gomes, C. Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application. Energies 2021, 14, 7964. [Google Scholar] [CrossRef]
- Xu, H.; Shi, J.-L.; Lyu, S.; Lang, X. Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. Chin. J. Catal. 2020, 41, 1468–1473. [Google Scholar] [CrossRef]
- Lai, Z.; Peng, F.; Wang, H.; Yu, H.; Zhang, S.; Zhao, H. A new insight into regulating high energy facets of rutile TiO2. J. Mater. Chem. A 2013, 1, 4182–4185. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, e1901997. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, Z.; Zhou, C.; Ren, Z.; Yang, X. Single Molecule Photocatalysis on TiO2 Surfaces. Chem. Rev. 2019, 119, 11020–11041. [Google Scholar] [CrossRef]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Cai, Q.; Wang, F.; He, J.; Dan, M.; Cao, Y.; Yu, S.; Zhou, Y. Oxygen defect boosted photocatalytic hydrogen evolution from hydrogen sulfide over active {0 0 1} facet in anatase TiO2. Appl. Surf. Sci. 2020, 517, 146198. [Google Scholar] [CrossRef]
- Pekakis, P.A.; Xekoukoulotakis, N.P.; Mantzavinos, D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006, 40, 1276–1286. [Google Scholar] [CrossRef]
- Saleh, R.; Taufik, A.; Prakoso, S.P. Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants: Influence of oxidants and inorganic anions. Appl. Surf. Sci. 2019, 480, 697–708. [Google Scholar] [CrossRef]
- Habiba, U.; Islam, M.S.; Siddique, T.A.; Afifi, A.M.; Ang, B.C. Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na-Titanate/TiO2 composites synthesized by solution casting method. Carbohydr. Polym. 2016, 149, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Xu, H.; Zhang, Q.; Huang, Y.-C.; Shi, C.; Chang, Y.-C.; Xu, X.; Tang, J.; Gu, Y.; Pao, C.-W. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Adv. Mater. 2023, 35, 2305074. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, M.; Legesse, M.; Mellouhi, F.E.; Bentria, E.T.; Madjet, M.E.; Fisher, T.S.; Kais, S.; Alharbi, F.H. A Universal Chemical-Induced Tensile Strain Tuning Strategy to Boost Oxygen-Evolving Electrocatalysis on Perovskite Oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar]
- Wang, Y.; Huang, L.; Zhang, T.C.; Wang, Y.; Yuan, S. Visible-Light-Induced photocatalytic oxidation of gaseous ammonia on Mo, c-codoped TiO2: Synthesis, performance and mechanism. Chem. Eng. J. 2024, 482, 148811. [Google Scholar] [CrossRef]
- Ma, X.; Wu, X.; Wang, H.; Wang, Y. A Janus MoSSe monolayer: A potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. J. Mater. Chem. A 2018, 6, 2295–2301. [Google Scholar] [CrossRef]
- Huang, L.; Cui, H.; Zhang, W.; Pu, D.; Zeng, G.; Liu, Y.; Zhou, S.; Wang, C.; Zhou, J.; Wang, C.; et al. Efficient Narrow-Bandgap Mixed Tin-Lead Perovskite Solar Cells via Natural Tin Oxide Doping. Adv. Mater. 2023, 35, e2301125. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, G.; Chen, G.F.; Zhang, H.; Zhang, S.; Wang, H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Adv. Mater. 2021, 33, e2007650. [Google Scholar] [CrossRef]
- Trangwachirachai, K.; Kao, I.T.; Huang, W.-H.; Chen, C.-L.; Lin, Y.-C. Co-activation of methane and nitrogen to acetonitrile over MoCx/Al2O3 catalysts. Catal. Sci. Technol. 2023, 13, 5248–5258. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, G.; Mao, Y.; Bao, X.; Wang, Z.; Wang, P.; Liu, Y.; Zheng, Z.; Dai, Y.; Cheng, H.; et al. Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO2 nanosheets. Chem. Eng. J. 2022, 430, 133085. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, L.X.; Chen, G.F.; Yang, X.; Wang, H. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angew. Chem. Int. Ed. 2019, 58, 2612–2616. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gu, S.; Sun, Z.; Guo, F.; Xie, Y.; Tao, B.; He, X.; Zhang, W.; Chang, H. The in-built bionic “MoFe cofactor” in Fe-doped two-dimensional MoTe2 nanosheets for boosting the photocatalytic nitrogen reduction performance. J. Mater. Chem. A 2020, 8, 13038–13048. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Chiu, C.-C.; Regner, J.; Sofer, Z.; Seetha Lakshmi, K.C.; Lin, J.-Y.; Lin, T.-W. Highly exfoliated NiPS3 nanosheets as efficient electrocatalyst for high yield ammonia production. Chem. Eng. J. 2022, 430, 132649. [Google Scholar] [CrossRef]
- Li, H.; Zhao, H.; Li, C.; Li, B.; Tao, B.; Gu, S.; Wang, G.; Chang, H. Redox regulation of photocatalytic nitrogen reduction reaction by gadolinium doping in two-dimensional bismuth molybdate nanosheets. Appl. Surf. Sci. 2022, 600, 154105. [Google Scholar] [CrossRef]
- Yalcin, O.; Wachs, I.E.; Onal, I. Role of chromium in Cr–Fe oxide catalysts for high temperature water-gas shift reaction—A DFT study. Int. J. Hydrogen Energy 2021, 46, 17154–17162. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Han, Y.; Ma, Y.; Zhao, H.; Nowak, A.; Li, J. Deep learning for ultra-fast and high precision screening of energy materials. Energy Storage Mater. 2021, 39, 45–53. [Google Scholar] [CrossRef]
- Zhao, P.; Zheng, J.; Guo, P.; Jiang, Z.; Cao, L.; Wan, Y. Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study. Comput. Mater. Sci. 2017, 128, 287–293. [Google Scholar] [CrossRef]
- Pašti, I.A.; Jovanović, A.; Dobrota, A.S.; Mentus, S.V.; Johansson, B.; Skorodumova, N.V. Atomic adsorption on pristine graphene along the Periodic Table of Elements—From PBE to non-local functionals. Appl. Surf. Sci. 2018, 436, 433–440. [Google Scholar] [CrossRef]
- Gu, X.; Luo, Y.; Li, Q.; Wang, R.; Fu, S.; Lv, X.; He, Q.; Zhang, Y.; Yan, Q.; Xu, X.; et al. First-Principle Insight Into the Effects of Oxygen Vacancies on the Electronic, Photocatalytic, and Optical Properties of Monoclinic BiVO4(001). Front. Chem. 2020, 8, 601983. [Google Scholar] [CrossRef]
- Guo, H.; Li, L.; Wang, X.; Yao, G.; Yu, H.; Tian, Z.; Li, B.; Chen, L. Theoretical Investigation on the Single Transition-Metal Atom-Decorated Defective MoS2 for Electrocatalytic Ammonia Synthesis. ACS Appl. Mater. Interfaces 2019, 11, 36506–36514. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.C.; Park, T. Materials Crystal Chemistry; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
Configurations | Average Ti-O Bond Length (Å) | Eads (eV) |
---|---|---|
TiO2 (001) | 1.936 | / |
TiO2-Ti-F− | 1.950 | −3.505 |
TiO2-Ti-Cl− | 1.948 | −0.913 |
TiO2-Ti-Br− | 1.946 | −1.075 |
TiO2-Ti-I− | 1.944 | −1.504 |
TiO2-O-F− | 1.942 | −1.545 |
TiO2-O-Cl− | 1.940 | −0.812 |
TiO2-O-Br− | 1.938 | −0.631 |
TiO2-O-I− | 1.937 | −0.603 |
TiO2-NO3− | 1.945 | −0.896 |
TiO2-CO32− | 1.947 | −1.278 |
TiO2-SO42− | 1.950 | −3.025 |
Configurations | Mulliken Charge (e) |
---|---|
TiO2 (001) | 2.49 |
TiO2-Ti-F− | 2.28 |
TiO2-Ti-Cl− | 2.32 |
TiO2-Ti-Br− | 2.36 |
TiO2-Ti-I− | 2.24 |
TiO2-NO3− | 2.30 |
TiO2-CO32− | 2.34 |
TiO2-SO42− | 2.37 |
Lattice Constants (Å) | ||
---|---|---|
Category | a/b | c |
This work | 3.78 | 9.62 |
Experimental | 3.78 | 9.50 |
Difference | 0% | 1.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Gao, M.; Li, H. Effect of Surface Anions Adsorbed by Rutile TiO2 (001) on Photocatalytic Nitrogen Reduction Reaction: A Density Functional Theory Calculation. Molecules 2024, 29, 4566. https://doi.org/10.3390/molecules29194566
Jiang X, Gao M, Li H. Effect of Surface Anions Adsorbed by Rutile TiO2 (001) on Photocatalytic Nitrogen Reduction Reaction: A Density Functional Theory Calculation. Molecules. 2024; 29(19):4566. https://doi.org/10.3390/molecules29194566
Chicago/Turabian StyleJiang, Xiaoyu, Mengyuan Gao, and Hongda Li. 2024. "Effect of Surface Anions Adsorbed by Rutile TiO2 (001) on Photocatalytic Nitrogen Reduction Reaction: A Density Functional Theory Calculation" Molecules 29, no. 19: 4566. https://doi.org/10.3390/molecules29194566
APA StyleJiang, X., Gao, M., & Li, H. (2024). Effect of Surface Anions Adsorbed by Rutile TiO2 (001) on Photocatalytic Nitrogen Reduction Reaction: A Density Functional Theory Calculation. Molecules, 29(19), 4566. https://doi.org/10.3390/molecules29194566