A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study
Abstract
:1. Introduction
- (i)
- The formation of the detected adducts via an intermediate stage is rather evident. The number of possible intermediates is, however, substantially higher. Next, the detected products may form via a common intermediate or through two different types of intermediates. Such scenarios have recently been analyzed in reactions between conjugated dienes and alkenes [30].
- (ii)
- The authors assumed a priori the formation of exo-type Diels–Alder cycloadducts. However, many experimental results indicate that in Diels–Alder reactions between conjugated dienes and conjugated nitroalkenes, the endo-nitro isomer is always preferred [31,32]. Unfortunately, the possibility of forming these types of cycloadducts was not considered in the mechanistic discussion.
- (iii)
- Assuming a zwitterionic mechanism for the title reaction, not just one, but six isomeric zwitterionic intermediates should be considered [33]. Different zwitterions may convert to the same or different final products. Furthermore, the mutual conversion of zwitterions through a rotation of the single bond within >C-C-NO2 moiety is feasible and should be considered.
- (iv)
- (v)
- Assuming the formation of the Diels–Alder product within the initial reaction stage, a one-step cycloaddition mechanism cannot be assumed a priori. Recently, many examples of stepwise Diels–Alder reactions have been shown to proceed through the formation of biradical or zwitterionic intermediates [35].
- (vi)
- Although the stereoconfiguration of 4,5-cis-3-carboethoxy-4-phenyl-5-carbomethoxy-isoxazoline 2-oxide was fully established on the basis of the RTG experiment, the stereoconfiguration of the Michael-type adduct (3) remains unclear. In practice, more than one structure of this type of adduct is possible [32,36].
2. Results and Discussion
2.1. Electronic Interactions
2.2. Energetic Considerations
2.3. Critical Structures
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeon, B.S.; Wang, S.A.; Ruszczycky, M.W.; Liu, H.W. Natural [4+2]-Cyclases. Chem. Rev. 2017, 117, 5367–5388. [Google Scholar] [CrossRef]
- Chaudhary, M.; Shaik, S.; Magan, M.; Hudda, S.; Gupta, M.; Singh, G.; Wadhwa, P. A Brief Review on Recent Developments in Diels-Alder Reactions. Curr. Org. Synth. 2024, 22, 2–23. [Google Scholar] [CrossRef]
- Siadati, S.A.; Rezazadeh, S. The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Radices 2022, 1, 46–68. [Google Scholar] [CrossRef]
- Jasiński, R. On the question of the selective protocol for the preparation of the Juglone via [4+2] cycloaddition involving 3-hydroxypyridazine: DFT mechanistic study. Chem. Heterocycl. Compd. 2023, 59, 179–182. [Google Scholar] [CrossRef]
- Dyan, O.T.; Zaikin, P.A. The Diels–Alder reaction in the synthesis of fused heterocyclic aromatic compounds. Chem. Heterocycl. Compd. 2023, 59, 201–216. [Google Scholar] [CrossRef]
- Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann. Chem. 1928, 460, 98–122. [Google Scholar] [CrossRef]
- Wen, C.; Dechsupa, N.; Yu, Z.; Zhang, X.; Liang, S.; Lei, X.; Xu, T.; Gao, X.; Hu, Q.; Innuan, P.; et al. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023, 28, 4856. [Google Scholar] [CrossRef]
- Woliński, P.; Kącka-Zych, A.; Mirosław, B.; Wielgus, E.; Olszewska, A.; Jasiński, R. Green, one-pot synthesis of 1,2-oxazine-type herbicides via non-catalyzed Hetero Diels-Alder reactions comprising (2E)-3-aryl-2-nitroprop-2-enenitriles. J. Clean. Prod. 2022, 356, 131878. [Google Scholar] [CrossRef]
- Jasiński, R. Searching for zwitterionic intermediates in Hetero Diels–Alder reactions between methyl α,p-dinitrocinnamate and vinyl-alkyl ethers. Comput. Theor. Chem. 2014, 1046, 93–98. [Google Scholar] [CrossRef]
- Fringuelli, F.; Matteucci, M.; Piermatti, O.; Pizzo, F.; Burla, M.C. [4+2] Cycloadditions of Nitroalkenes in Water. Highly Asymmetric Synthesis of Functionalized Nitronates. J. Org. Chem. 2001, 66, 4661–4666. [Google Scholar] [CrossRef]
- Bodnar, B.S.; Miller, M.J. The Nitrosocarbonyl Hetero-Diels–Alder Reaction as a Useful Tool for Organic Syntheses. Angew. Chem. Int. Ed. 2011, 50, 5630–5647. [Google Scholar] [CrossRef] [PubMed]
- Mlostoń, G.; Urbaniak, K.; Jasiński, M.; Würthwein, E.-U.; Heimgartner, H.; Zimmer, R.; Reissig, H.-U. The [4+2]-Cycloaddition of α-Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero-Diels–Alder Reactions—Experimental and Computational Studies. Chem. Eur. J. 2020, 26, 237–248. [Google Scholar] [CrossRef]
- Tang, X.; Lu, B.; Chen, Y.; Wang, J.; Jin, L.; Yang, H. Study on Diels–Alder reaction of nitrosoalkenes. Chem. Heterocycl. Compd. 2023, 59, 811–815. [Google Scholar] [CrossRef]
- Grosso, C.; Liber, M.; Brigas, A.F.; Pinho e Melo, T.M.V.D.; Lemos, A. Regioselectivity in Hetero Diels–Alder Reactions. J. Chem. Edu. 2019, 96, 148–152. [Google Scholar] [CrossRef]
- Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Adv. 2015, 5, 101999–102075. [Google Scholar] [CrossRef]
- Korzhenko, K.S.; Yushkova, A.S.; Rashchepkina, D.A.; Demidov, O.P.; Osipov, D.V.; Osyanin, V.A. A [4+2] cycloaddition of push-pull styrenes to 1,2-naphthpquinone 1-methides: A synthesis of 2-aryl-2,3-dihydro-1H-benzo[f]chromenes. Chem. Heterocycl. Compd. 2023, 59, 745–751. [Google Scholar] [CrossRef]
- Pokhodylo, N.T. Recent advances in the application of Meerwein arylation for the synthesis of complex heterocycles at the Ivan Franko National University of Lviv (microreview). Chem. Heterocycl. Compd. 2023, 59, 406–408. [Google Scholar] [CrossRef]
- Semenova, I.A.; Osipov, D.V.; Krasnikov, P.E.; Osyanin, V.A.; Klimochkin, Y.N. Synthesis of β-vinyl-substituted 4H-chromenes and [4+2] cycloaddition reactions involving them. Chem. Heterocycl. Compd. 2023, 59, 260–266. [Google Scholar] [CrossRef]
- Calvo-Martín, G.; Plano, D.; Martínez-Sáez, N.; Aydillo, C.; Moreno, E.; Espuelas, S.; Sanmartín, C. Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals 2022, 15, 1465. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dinda, H.; Chakraborty, I.; Bhattacharyya, R.; Das Sarma, J.; Shunmugam, R. Engineering Camptothecin-Derived Norbornene Polymers for Theranostic Application. ACS Omega 2017, 2, 2848–2857. [Google Scholar] [CrossRef]
- Sun, Z.; Jamieson, C.S.; Ohashi, M.; Houk, K.N.; Tang, Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat. Commun. 2022, 13, 2568. [Google Scholar] [CrossRef] [PubMed]
- Lavernhe, R.; Domke, P.; Wang, Q.; Zhu, J. Enantioselective Total Synthesis of (−)-Artatrovirenol A. J. Am. Chem. Soc. 2023, 145, 24408–24415. [Google Scholar] [CrossRef] [PubMed]
- Kosylo, N.; Hotynchan, A.; Skrypska, O.; Horak, Y.; Obushak, M. Synthesis and prediction of toxicological and pharmacological properties of Schiff bases containing arylfuran and pyrazole moiety. Sci. Radices 2024, 3, 62–73. [Google Scholar] [CrossRef]
- Jasiński, R. One-step versus two-step mechanism of Diels-Alder reaction of 1-chloro-1-nitroethene with cyclopentadiene and furan. J. Mol. Graph. Model. 2017, 75, 55–61. [Google Scholar] [CrossRef]
- Balthazor, T.M.; Gaede, B.; Korte, D.E.; Shieh, H.S. Reaction of 1,1,1-trichloro-3-nitro-2-propene with furans: A reexamination. J. Org. Chem. 1984, 49, 4547–4549. [Google Scholar] [CrossRef]
- Alves, T.V.; Fernández, I. Understanding the reactivity and selectivity of Diels-Alder reactions involving furans. Org. Biomol. Chem. 2023, 21, 7767–7775. [Google Scholar] [CrossRef]
- Sadowski, M.; Kula, K. Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett. 2024, 13, 15–30. [Google Scholar] [CrossRef]
- Sadowski, M.; Synkiewicz-Musialska, B.; Kula, K. (1E,3E)-1,4-Dinitro-1,3-butadiene—Synthesis, Spectral Characteristics and Computational Study Based on MEDT, ADME and PASS Simulation. Molecules 2024, 29, 542. [Google Scholar] [CrossRef]
- Itoh, K.; Kishimoto, S. The reaction of β-nitrostyrenes with 2-methoxyfuran: A novel formation of isoxazoline N-oxide together with Michael adducts. New J. Chem. 2000, 24, 347–349. [Google Scholar] [CrossRef]
- Jasiński, R. A reexamination of the molecular mechanism of the Diels–Alder reaction between tetrafluoroethene and cyclopentadiene. React. Kinet. Mech. Catal. 2016, 119, 49–57. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Ponikiewski, Ł.; Jasiński, R. The crystal structure of (1RS,4RS,5RS,6SR)-5-cyano-5-nitro-6-phenyl-bicyclo[2.2.1]hept-2-ene. Crystallogr. Rep. 2014, 59, 961–963. [Google Scholar] [CrossRef]
- Klenz, O.; Evers, R.; Miethchen, R.; Michalik, M. Organofluorine compounds and fluorinating agents Part 16: Monoalkylations and cycloadditions with trans-3,3,3-trifluoro-1-nitropropene. J. Fluor. Chem. 1997, 81, 205–210. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Jasiński, R. Molecular mechanism of Hetero Diels-Alder reactions between (E)-1,1,1-trifluoro-3-nitrobut-2-enes and enamine systems in the light of Molecular Electron Density Theory. J. Mol. Graph. Model. 2020, 101, 107714. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Kubik, M.; Łapczuk-Krygier, A.; Kącka, A.; Dresler, E.; Boguszewska-Czubara, A. An experimental and theoretical study of the hetero Diels–Alder reactions between (E)-2-aryl-1-cyano-1-nitroethenes and ethyl vinyl ether: One-step or zwitterionic, two-step mechanism? React. Kinet. Mech. Catal. 2014, 113, 333–345. [Google Scholar] [CrossRef]
- Jasiński, R. On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry 2021, 13, 1911. [Google Scholar] [CrossRef]
- Tokarz, P. Artificial Intelligence-Powered Pulse Sequences in Nuclear Magnetic Resonance and Magnetic Resonance Imaging: Historical Trends, Current Innovations and Perspectives. Sci. Radices 2024, 3, 30–55. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef]
- Domingo, L.R.; Sáez, J.A. Understanding the mechanism of polar Diels–Alder reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R. 1999–2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Sci. Radices 2024, 3, 157–186. [Google Scholar] [CrossRef]
- Mondal, A.; Mohammad-Salim, H.A.; Acharjee, N. Unveiling substituent effects in [3+2] cycloaddition reactions of benzonitrile N-oxide and benzylideneanilines from the molecular electron density theory perspective. Sci. Radices 2023, 2, 75–92. [Google Scholar] [CrossRef]
- Sadowski, M.; Utnicka, J.; Wojtowicz, J.; Kula, K. The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-B-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett. 2023, 12, 421–430. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Kula, K. Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Yousfi, Y.; Benchouk, W.; Mekelleche, S.M. Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Compd. 2023, 59, 118–127. [Google Scholar] [CrossRef]
- Kula, K.; Sadowski, M. Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd. 2023, 59, 138–144. [Google Scholar] [CrossRef]
- Raji, H.; Aitouna, A.O.; Barhoumi, A.; Hammal, R.; Chekroun, A.; Zeroual, A.; Benharref, A.; Mazoir, N. [2+1] Cycloaddition reaction of α-atlantone with m-CPBA in the light of experimental and MEDT quantum-chemical study. Chem. Heterocycl. Compd. 2023, 59, 112–117. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M. A Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Sci. Radices 2023, 2, 1–24. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023, 28, 5289. [Google Scholar] [CrossRef]
- Aitouna, A.O.; Barhoumi, A.; Zeroual, A. A Mechanism Study and an Investigation of the Reason for the Stereoselectivity in the [4+2] Cycloaddition Reaction between Cyclopentadiene and Gem-substituted Ethylene Electrophiles. Sci. Radices 2023, 2, 217–228. [Google Scholar] [CrossRef]
- Hellel, D.; Chafaa, F.; Nacereddine, A.K. Synthesis of tetrahydroquinolines and quinoline derivatives through the Lewis acid catalysed Povarov reaction: A comparative study between multi step and multi-component methods. Sci. Radices 2023, 2, 295–308. [Google Scholar] [CrossRef]
- Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023, 28, 8152. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Regioselectivity and the Molecular Mechanism of [3+2] Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules 2022, 27, 8441. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. The First Examples of [3+2] Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials 2022, 15, 7584. [Google Scholar] [CrossRef]
- Silvi, B. The synaptic order: A key concept to understand multicenter bonding. J. Mol. Struct. 2002, 614, 3–10. [Google Scholar] [CrossRef]
- Sadowski, M.; Dresler, E.; Zawadzińska, K.; Wróblewska, A.; Jasiński, R. Syn-propanethial S-oxide as the natural available building block for the preparation of nitrofunctionalized sulfur con-taining five-membered heterocycles: MEDT study. Molecules, 2024; submitted. [Google Scholar]
- Jasiński, R. On the question of the molecular mechanism of N-nitropyrazole rearrangement. Chem. Heterocycl. Compd. 2020, 56, 1210–1212. [Google Scholar] [CrossRef]
- Hess, B.A.; Baldwin, J.E. [1,5] Sigmatropic Hydrogen Shifts in Cyclic 1,3-Dienes. J. Org. Chem. 2002, 67, 6025–6033. [Google Scholar] [CrossRef]
- Klein, J.; Becker, J.Y. Metalation reactions—XIV: The generality of the 1.3-Sigmatropic shift of hydrogen in allenyllithium compounds. Tetrahedron 1972, 28, 5385–5392. [Google Scholar] [CrossRef]
- Watile, R.A.; Bunrit, A.; Margalef, J.; Akkarasamiyo, S.; Ayub, R.; Lagerspets, E.; Biswas, S.; Repo, T.; Samec, J.S.M. Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst. Nat. Commun. 2019, 10, 3826. [Google Scholar] [CrossRef]
- Jasiński, R. Synthesis of 1,2-oxazine N-oxides via noncatalyzed hetero Diels-Alder reactions of nitroalkenes (microreview). Chem. Heterocycl. Compd. 2024, 60, 121–123. [Google Scholar] [CrossRef]
- Kącka-Zych, A. The Molecular Mechanism of the Formation of Four-Membered Cyclic Nitronates and Their Retro (3+2) Cycloaddition: A DFT Mechanistic Study. Molecules 2021, 26, 4786. [Google Scholar] [CrossRef]
- Kacka-Zych, A. Push-pull nitronates in the [3+2] cycloaddition with nitroethylene: Molecular Electron Density Theory study. J. Mol. Graph. Model. 2020, 97, 1075492. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 2019, 267–282. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
µ [eV] | η [eV] | ω [eV] | N [eV] | |
---|---|---|---|---|
1 | −2.23 | 6.34 | 0.39 | 3.72 |
2 | −4.51 | 4.53 | 2.24 | 2.34 |
Transformation | Transition | ΔH | ΔS | ΔG |
---|---|---|---|---|
The formation of intermediates | 1+2 → MCA | −7.1 | −40.3 | 4.9 |
MCA → TSA | 14.4 | −11.8 | 18.0 | |
MCA → Iendo1 | 1.7 | −8.3 | 4.2 | |
1+2 → MCB | −4.5 | −32.8 | 5.3 | |
MCB → TSB | 16.5 | −13.7 | 20.6 | |
MCB → Iendo2 | 1.2 | −15.2 | 5.7 | |
1+2 → MCC | −5.2 | −38.2 | 6.2 | |
MCC → TSC | 17.2 | −8.4 | 19.7 | |
MCC → Iendo3 | −0.2 | −7.5 | 2.0 | |
1+2 → MCD | −6.6 | −39.7 | 5.3 | |
MCD → TSD | 14.9 | −9.7 | 17.8 | |
MCD → Iexo1 | 4.7 | −9.4 | 7.5 | |
1+2 → MCE | −4.4 | −36.4 | 6.4 | |
MCE → TSE | 17.3 | −8.2 | 19.7 | |
MCE → Iexo2 | −0.7 | −11.5 | 2.7 | |
1+2 → MCF | −5.4 | −34.6 | 4.9 | |
MCF → TSF | 16.5 | −13.0 | 20.3 | |
MCF → Iexo3 | 0.2 | −15.2 | 4.7 | |
The rotation around the nitroethyl moiety within intermediates | TSrot(Iendo1 → Iendo2) | 4.8 | −4.5 | 6.1 |
Iendo1 → Iendo2 | 2.1 | 0.6 | 1.9 | |
TSrot(Iendo2 → Iendo3) | 1.0 | −4.9 | 2.5 | |
Iendo2 → Iendo3 | −2.1 | 2.3 | −2.8 | |
TSrot(Iendo3 → Iendo1) | 3.5 | −7.8 | 5.8 | |
Iendo3 → Iendo1 | 0.0 | −2.9 | 0.8 | |
TSrot(Iexo1 →Iexo2) | 0.9 | −3.8 | 2.1 | |
Iexo1 → Iexo2 | −3.2 | 0.8 | −3.6 | |
TSrot(Iexo2 → Iexo3) | 2.1 | −4.9 | 3.6 | |
Iexo2 → Iexo3 | −0.1 | −2.0 | 0.5 | |
The formation of hetero Diels–Alder adducts | Iexo1 → TSG | 1.4 | −3.7 | 2.5 |
Iexo1 → HDAexo | −2.8 | −3.8 | −1.7 | |
Iexo3 → TSG | 4.8 | −3.0 | 5.7 | |
Iexo3 → HDAexo | 0.5 | −3.2 | 1.5 | |
Iendo1 → TSI | 0.7 | −4.3 | 2.0 | |
Iendo1 → HDAendo | −8.2 | −2.4 | −7.5 | |
The formation of Diels–Alder adducts | Iendo1 → TSJ | 9.1 | −8.0 | 11.5 |
Iendo1 → DAendo | −3.1 | −7.9 | −0.7 | |
Iexo1 → TSK | 10.6 | −14.0 | 14.8 | |
Iexo1 → DAexo | −3.9 | −13.3 | 0.0 | |
The formation of Michael adducts | Iexo2 → TSL | 32.5 | 0.5 | 32.3 |
Iexo2 → Z-3 | −17.3 | 6.6 | −19.3 | |
Iexo3 → TSM | 32.6 | 2.4 | 31.9 | |
Iexo3 → Z-3 | −17.2 | 8.6 | −19.8 | |
Iendo2 → TSN | 33.4 | 1.8 | 32.9 | |
Iendo2 → E-3 | −19.6 | 1.5 | −20.0 | |
Iendo3 → TSO | 35.5 | −0.4 | 35.7 | |
Iendo3 → E-3 | −16.9 | 4.8 | −18.4 | |
The formation of nitronate Z-4 | Iexo3 → TSP | 8.8 | 0.4 | 8.7 |
Iexo3 → Z-4 | −26.2 | 4.7 | −27.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowski, M.; Dresler, E.; Wróblewska, A.; Jasiński, R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules 2024, 29, 4876. https://doi.org/10.3390/molecules29204876
Sadowski M, Dresler E, Wróblewska A, Jasiński R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules. 2024; 29(20):4876. https://doi.org/10.3390/molecules29204876
Chicago/Turabian StyleSadowski, Mikołaj, Ewa Dresler, Aneta Wróblewska, and Radomir Jasiński. 2024. "A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study" Molecules 29, no. 20: 4876. https://doi.org/10.3390/molecules29204876
APA StyleSadowski, M., Dresler, E., Wróblewska, A., & Jasiński, R. (2024). A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules, 29(20), 4876. https://doi.org/10.3390/molecules29204876