Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fe3O4, Fe3O4@Ag, and Fe3O4@Ag@L-Cys before PS-MPs Removal
2.2. Effect of Contact Time on PS-MP Removal
2.3. Effect of Adsorbent Dose on PS-MP Removal Efficiency
2.4. Study of the Effect of the pH of the Aqueous Solution Containing PS-MPs on the Removal Efficiency and Adsorption Mechanism
2.5. Thermodynamic Studies of the Process
2.6. Study of the Recovery and Reuse of the Adsorbent and Application to Real Samples
3. Materials and Methods
3.1. Materials
3.2. Preparation of Core Fe3O4 Nanoparticles
3.3. Preparation of Fe3O4 Modified with Silver Nanoparticles (Fe3O4@Ag)
3.4. Preparation of Fe3O4 Modified with Silver Nanoparticles and Functionalized with L-cysteine (Fe3O4@Ag@L-Cys)
3.5. Proposed General Process for the Removal of PS-MPs in Water Using Fe3O4, Fe3O4@Ag, and Fe3O4@Ag@L-Cys as Sorbents
3.6. Calculations of Removal Rate of MPs
3.7. Procedure for Counting MPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.X.; Huang, D.; Ji, J.H.; Völker, C.; Wurm, F.R. Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Adv. Sci. 2021, 8, 2001121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. Handb. Environ. Chem. 2018, 58, 1–23. [Google Scholar] [CrossRef]
- Dick Vethaak, A.; Legler, J. Microplastics and Human Health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, K.; Green, D. The Potential Effects of Microplastics on Human Health: What Is Known and What Is Unknown. Ambio 2021, 51, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Coyle, R.; Hardiman, G.; Driscoll, K.O. Microplastics in the Marine Environment: A Review of Their Sources, Distribution Processes, Uptake and Exchange in Ecosystems. CSCEE 2020, 2, 100010. [Google Scholar] [CrossRef]
- Alberghini, L.; Truant, A.; Santonicola, S.; Colavita, G.; Giaccone, V. Microplastics in Fish and Fishery Products and Risks for Human Health: A Review. Int. J. Environ. Res. Public Health 2023, 20, 789. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Enfrin, M.C. Membrane Fouling by Nano/Microplastics: Origin, Mechanisms and Mitigation Strategies; University of Surrey: Guildford, UK, 2021. [Google Scholar]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic Contamination of the Food Chain: A Threat to Human Health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A Review on Microplastics and Nanoplastics in the Environment: Their Occurrence, Exposure Routes, Toxic Studies, and Potential Effects on Human Health. Mar. Pollut Bull 2022, 181, 113832. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Choi, D.; Han, S.; Jung, S.Y.; Choi, J.; Hong, J. Potential Toxicity of Polystyrene Microplastic Particles. Sci. Rep. 2020, 10, 7391. [Google Scholar] [CrossRef] [PubMed]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and Quantification of Macro- and Microplastics on an Agricultural Farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef]
- Costa-Gómez, I.; Suarez-Suarez, M.; Moreno, J.M.; Moreno-Grau, S.; Negral, L.; Arroyo-Manzanares, N.; López-García, I.; Peñalver, R. A Novel Application of Thermogravimetry-Mass Spectrometry for Polystyrene Quantification in the PM10 and PM2.5 Fractions of Airborne Microplastics. Sci. Total. Environ. 2023, 856, 159041. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, X.; Luo, X.; Liu, G.; Zheng, H. Effects of Polystyrene Microplastics on the Fitness of Earthworms in an Agricultural Soil. IOP Conf. Ser. Earth Environ. Sci. 2017, 61, 012148. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Llorca, M.; Seró, R.; Moyano, E.; Barceló, D.; Abad, E.; Farré, M. Trace Analysis of Polystyrene Microplastics in Natural Waters. Chemosphere 2019, 236, 124321. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J. Exposure to Polystyrene Microplastics Impairs Gonads of Zebrafish (Danio Rerio). Chemosphere 2021, 263, 128161. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Rafiee, G.; Seifori, P.; Walker, T.R. Toxicity of Polystyrene Microplastics on Juvenile Oncorhynchus Mykiss (Rainbow Trout) after Individual and Combined Exposure with Chlorpyrifos. J. Hazard. Mater. 2021, 403, 123980. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.J. Microplastics in Wastewater Treatment Plants: Detection, Occurrence and Removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Sun, A.; Wang, W.-X. Human Exposure to Microplastics and Its Associated Health Risks. Environ. Health 2023, 1, 139–149. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic Transfer of Microplastics and Mixed Contaminants in the Marine Food Web and Implications for Human Health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. A Critical Review of Control and Removal Strategies for Microplastics from Aquatic Environments. J. Environ. Chem. Eng. 2021, 9, 105463. [Google Scholar] [CrossRef]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of Microplastics Using Bionanomaterials: A Review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Parashar, N.; Hait, S. Recent Advances on Microplastics Pollution and Removal from Wastewater Systems: A Critical Review. J. Environ. Manage. 2023, 340, 118014. [Google Scholar] [CrossRef]
- Ahmed, R.; Hamid, A.K.; Krebsbach, S.A.; He, J.; Wang, D. Critical Review of Microplastics Removal from the Environment. Chemosphere 2022, 293, 133557. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Gao, W.; Zhang, Y.; He, D. Removal of Microplastics from Water by Magnetic Nano-Fe3O4. Sci. Total. Environ. 2022, 802, 149838. [Google Scholar] [CrossRef]
- Abutaleb, A.; Imran, M.; Zouli, N.; Khan, A.H.; Hussain, S.; Ali, M.A.; Bakather, O.; Gondal, M.A.; Khan, N.A.; Panchal, H.; et al. Fe3O4-Multiwalled Carbon Nanotubes-Bentonite as Adsorbent for Removal of Methylene Blue from Aqueous Solutions. Chemosphere 2023, 316, 137824. [Google Scholar] [CrossRef]
- Heo, Y.; Lee, E.H.; Lee, S.W. Adsorptive Removal of Micron-Sized Polystyrene Particles Using Magnetic Iron Oxide Nanoparticles. Chemosphere 2022, 307, 135672. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of Microplastics from Aqueous Solutions by Magnetic Carbon Nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Mehdinia, A.; Bahrami, M.; Mozaffari, S. A Comparative Study on Different Functionalized Mesoporous Silica Nanomagnetic Sorbents for Efficient Extraction of Parabens. J. Iran. Chem. Soc. 2015, 12, 1543–1552. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Martin, L.M.A.; Sheng, J.; Zimba, P.V.; Zhu, L.; Fadare, O.O.; Haley, C.; Wang, M.; Phillips, T.D.; Conkle, J.; Xu, W. Testing an Iron Oxide Nanoparticle-Based Method for Magnetic Separation of Nanoplastics and Microplastics from Water. Nanomaterials 2022, 12, 2348. [Google Scholar] [CrossRef]
- Shi, Q.; Guo, S.; Tang, J.; Lyu, H.; Ri, C.; Sun, H. Enhanced Removal of Aged and Differently Functionalized Polystyrene Nanoplastics Using Ball-Milled Magnetic Pinewood Biochars. Environ. Pollut. 2023, 316, 120696. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Martínez, Y.; Ruiz-Mendieta, M.; Caravaca-Garratón, M.; Hernández-Córdoba, M.; López-García, I. Fast Procedure for Removing Silver Species in Waters Using a Simple Magnetic Nanomaterial. Separations 2023, 10, 398. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Yu, S.; Cui, M. Removal of Pristine and Aged Microplastics from Water by Magnetic Biochar: Adsorption and Magnetization. Sci. Total. Environ. 2023, 875, 16264. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J. Exploring the Potential of Cellulose Benzoate Adsorbents Modified with Carbon Nanotubes and Magnetic Carbon Nanotubes for Microplastic Removal from Water. Chem. Eng. J. 2023, 469, 143910. [Google Scholar] [CrossRef]
- Muñoz-Sandoval, M.J.; Caravaca, M.; López-García, I.; Hernández-Córdoba, M.; Vicente-Martínez, Y. Complete and Simultaneous Removal of Ionic Silver and Silver Nanoparticles by Using an Ionic Liquid Supported on a Magnetic Nanoparticle Core. Environ. Res. 2022, 214, 113943. [Google Scholar] [CrossRef]
- Caravaca, M.; Vicente-Martínez, Y.; Soto-Meca, A.; Angulo-González, E. Total Removal of Amoxicillin from Water Using Magnetic Core Nanoparticles Functionalized with Silver. Environ. Res. 2022, 211, 113091. [Google Scholar] [CrossRef]
- Vicente-Martínez, Y.; Caravaca, M.; Soto-Meca, A. Simultaneous Adsorption of Mercury Species from Aquatic Environments Using Magnetic Nanoparticles Coated with Nanomeric Silver Functionalized with L-Cysteine. Chemosphere 2021, 282, 131128. [Google Scholar] [CrossRef]
- Vicente-Martínez, Y.; Caravaca, M.; Soto-Meca, A.; Martín-Pereira, M.Á.; García-Onsurbe, M.D.C. Adsorption Studies on Magnetic Nanoparticles Functionalized with Silver to Remove Nitrates from Waters. Water 2021, 13, 1757. [Google Scholar] [CrossRef]
- López-García, I.; Vicente-Martínez, Y.; Hernández-Córdoba, M. Speciation of Silver Nanoparticles and Ag(I) Species Using Cloud Point Extraction Followed by Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 93–97. [Google Scholar] [CrossRef]
Adsorbents | Removal Efficiency at Different Times (%) | |||
---|---|---|---|---|
5 min | 15 min | 30 min | 60 min | |
Fe3O4 | 50% | 70% | 100% | 100% |
Fe3O4@Ag | 50% | 50% | 100% | 100% |
Fe3O4@Ag@L-Cys | 50% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente-Martínez, Y.; Soler-García, I.; Hernández-Córdoba, M.; López-García, I.; Penalver, R. Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment. Molecules 2024, 29, 4565. https://doi.org/10.3390/molecules29194565
Vicente-Martínez Y, Soler-García I, Hernández-Córdoba M, López-García I, Penalver R. Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment. Molecules. 2024; 29(19):4565. https://doi.org/10.3390/molecules29194565
Chicago/Turabian StyleVicente-Martínez, Yésica, Irene Soler-García, Manuel Hernández-Córdoba, Ignacio López-García, and Rosa Penalver. 2024. "Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment" Molecules 29, no. 19: 4565. https://doi.org/10.3390/molecules29194565
APA StyleVicente-Martínez, Y., Soler-García, I., Hernández-Córdoba, M., López-García, I., & Penalver, R. (2024). Development of a Fast and Efficient Strategy Based on Nanomagnetic Materials to Remove Polystyrene Spheres from the Aquatic Environment. Molecules, 29(19), 4565. https://doi.org/10.3390/molecules29194565