Display of Bacterial Exochitanase on Bacillus subtilis Spores Improved Enzyme Stability and Recyclability
Abstract
:1. Introduction
2. Results
2.1. Cloning, Transformation, and Construction of Fusion Protein
2.2. SDS-PAGE and Western Blot Confirmation of Displayed Exochitinase
2.3. Immunofluorescence Assay of Immobilized Exochitinase
2.4. Enzyme Activity Assay of Displayed Protein
2.5. The Effect of Temperature and pH on the Activity and Stability of the Immobilized Enzyme
2.6. The Effect of Chemical Substances and Metal Ions on Enzyme Activity
2.7. Recovery Rate of Immobilized Exochitinase
3. Discussion
4. Materials and Methods
4.1. Purification of Chi Protein and Preparation of Polyclonal Antibody
4.2. Construction of Recombinant Plasmids and Transformation
4.3. Spore Preparations and Processing
4.4. SDS-PAGE and Western Blot Analysis of Recombinant Exochitinase
4.5. Examination of Bacterial Spore Using Immunofluorometric Method
4.6. Enzyme Activity Assay of Displayed Protein
4.7. The Effect of pH and Temperature on the Activity and Stability of Immobilized Enzyme
4.8. Effect of Chemical Substances and Metal Ions on Enzyme Activity
4.9. Recovery Rate of Immobilized Exochitinase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.-X.; Li, P.-Y.; Chen, X.-L.; Zhang, Y.-S.; Wang, J.-P.; Wang, Y.-J.; Sheng, Q.; Sun, Z.-Z.; Qin, Q.-L.; Ren, X.-B.; et al. A pathway for chitin oxidation in marine bacteria. Nat. Commun. 2022, 13, 5899. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Ji, C.; Chen, S.; Song, Z.; Zhou, J.; Qian, K.; Guo, W. Multifunctional textiles with flame retardant and antibacterial properties: A review. Molecules 2023, 28, 6628. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.; Balaraman, D.; Panangal, M.; Rao, T.N.; Perumal, E.; Amutha, R.; Kumarappan, A.; Renuga, P.S.; Arumugam, S.; Thirunavukkarasu, R.; et al. Bioconversion of chitin waste through Stenotrophomonas maltophilia for production of chitin derivatives as a Seabass enrichment diet. Sci. Rep. 2022, 12, 4792. [Google Scholar] [CrossRef]
- Jones, M.; Kujundzic, M.; John, S.; Bismarck, A. Crab vs. mushroom: A review of crustacean and fungal chitin in wound treatment. Mar. Drugs 2020, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.V.; Kumar, P.K.A. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Biodegradation 2012, 23, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.I.; Rahman, S.; Queen, A.; Ahamad, S.; Ali, S.; Kim, J.; Hassan, I. Implications of molecular diversity of chitin and its derivatives. Appl. Microbiol. Biotechnol. 2017, 101, 3513–3536. [Google Scholar] [CrossRef]
- Minh, N.C.; Van Hoa, N.; Trung, T.S. Preparation, properties, and application of low-molecular-weight chitosan. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; pp. 453–471. [Google Scholar]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Sun, H.; Gao, L.; Xue, C.; Mao, X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2767–2796. [Google Scholar] [CrossRef]
- Funkhouser, J.D.; Aronson, N.N. Chitinase family GH18: Evolutionary insights from the genomic history of a diverse protein family. BMC Evol. Biol. 2007, 7, 1–16. [Google Scholar] [CrossRef]
- Dahiya, N.; Tewari, R.; Hoondal, G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006, 71, 773–782. [Google Scholar] [CrossRef]
- Fritze, D.J.P. Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology 2004, 94, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Driks, A.; Eichenberger, P. The spore coat. Microbiol. Spectr. 2006, 4, 1–22. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef]
- Li, S.; He, L.; Shi, N.; Ni, Z.; Bu, Q.; Zhu, D.; Chen, H. Display of Lignin Peroxidase on the Surface of Bacillus subtilis. Appl. Biochem. Biotechnol. 2024, 1–15. [Google Scholar] [CrossRef]
- Song, T.; Wang, F.; Xiong, S.; Jiang, H. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochem. Biophys. Res. Commun. 2019, 510, 13–19. [Google Scholar] [CrossRef]
- Knecht, L.D.; Pasini, P.; Daunert, S. Bacterial spores as platforms for bioanalytical and biomedical applications. Anal. Bioanal. Chem. 2011, 400, 977–989. [Google Scholar] [CrossRef]
- Di Gregorio Barletta, G.; Vittoria, M.; Lanzilli, M.; Petrillo, C.; Ricca, E.; Isticato, R. CotG controls spore surface formation in response to the temperature of growth in Bacillus subtilis. Environ. Microbiol. 2022, 24, 2078–2088. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Parra, R.; Hu, H.; Wang, W.; Zhang, X.; Iqbal, H.M. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants—A review. Sci. Total Environ. 2017, 576, 646–659. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Microbial chitinases: Properties, enhancement and potential applications. Protoplasma 2021, 258, 695–710. [Google Scholar] [CrossRef]
- Kumar, M.; Chakdar, H.; Pandiyan, K.; Thapa, S.; Shahid, M.; Singh, A.; Srivastava, A.K.; Saxena, A.K. Bacterial chitinases: Genetics, engineering and applications. World J. Microbiol. Biotechnol. 2022, 38, 252. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xin, Y.; Su, X.; Wang, X.; Zhang, J.; Tu, T.; Wang, Y.; Yao, B.; Huang, H.; Luo, H. Heterologous expression and characterization of thermostable chitinase and β-N-acetylhexosaminidase from Caldicellulosiruptor acetigenus and their synergistic action on the bioconversion of chitin into N-acetyl-d-glucosamine. Int. J. Biol. Macromol. 2021, 192, 250–257. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.F.; García-Fraga, B.; López-Seijas, J.; Sieiro, C. Characterization and optimization of heterologous expression in Escherichia coli of the chitinase encoded by the chiA gene of Bacillus halodurans C-125. Process Biochem. 2014, 49, 1622–1629. [Google Scholar] [CrossRef]
- Lin, P.; Yuan, H.; Du, J.; Liu, K.; Liu, H.; Wang, T. Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl. Microbiol. Biotechnol. 2020, 104, 2319–2331. [Google Scholar] [CrossRef]
- Sóti, V.; Lenaerts, S.; Cornet, I. Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes. J. Biotechnol. 2018, 270, 70–76. [Google Scholar] [CrossRef]
- Rostami, A.; Hinc, K.; Goshadrou, F.; Shali, A.; Bayat, M.; Hassanzadeh, M.; Amanlou, M.; Eslahi, N.; Ahmadian, G. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 2017, 140, 17–23. [Google Scholar] [CrossRef]
- Isticato, R.; Cangiano, G.; Tran, H.T.; Ciabattini, A.; Medaglini, D.; Oggioni, M.R.; De Felice, M.; Pozzi, G.; Ricca, E. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 2001, 183, 6294–6301. [Google Scholar] [CrossRef]
- Gonçalves, G.; Santos, R.A.; Coutinho, F.; Pedrosa, N.; Curado, M.; Machado, M.; Costas, B.; Bonneville, L.; Serrano, M.; Carvalho, A.P.; et al. Oral vaccination of fish against vibriosis using spore-display technology. Front. Immunol. 2022, 13, 1012301. [Google Scholar] [CrossRef]
- Cheba, B.A.; Zaghloul, T.I.; El-Massry, M.H.; El-Mahdy, A.R. Effect of metal ions, chemical agents, and organic solvent on Bacillus sp. R2 chitinase activity. Procedia Technol. 2016, 22, 465–470. [Google Scholar] [CrossRef]
- Sakai, K.; Narihara, M.; Kasama, Y.; Wakayama, M.; Moriguchi, M. Purification and characterization of thermostable beta-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Appl. Environ. Microbiol. 1994, 60, 2911–2915. [Google Scholar] [CrossRef]
- Jankiewicz, U.; Baranowski, B.; Swiontek Brzezinska, M.; Frąk, M.J.B. Purification, characterization and cloning of a chitinase from Stenotrophomonas rhizophila G22. 3 Biotech. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hageman, J.H.; Shankweiler, G.W.; Wall, P.R.; Franich, K.; McCowan, G.W.; Cauble, S.M.; Grajeda, J.; Quinones, C. Single, chemically defined sporulation medium for Bacillus subtilis: Growth, sporulation, and extracellular protease production. J. Bacteriol. 1984, 160, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Aunpad, R.; Panbangred, W. Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. J. Biosci. Bioeng. 2003, 96, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Wani, S.; Sayyed, R.; Thakur, R.; Gulati, A. Production, purification and kinetics of chitinase of Stenotrophomonas maltophilia isolated from rhizospheric soil. Indian J. Exp. Biol. 2018, 56, 274–278. [Google Scholar]
- Donderski, W.; Brzezinska, M.S. The Influence of Heavy Metals on the Activity of Chitinases Produced by Planktonic, Benthic and Epiphytic Bacteria. Pol. J. Environ. Stud. 2005, 14, 851–859. [Google Scholar]
- Yuli, P.; Suhartono, M.T.; Rukayadi, Y.; Hwang, J.K.; Pyun, Y.R. Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp.13.26. Enzyme Microb. Technol. 2004, 35, 147–153. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, J.; Ding, S.; Liu, S.; Yang, Z. Purification and properties of chitinase from Enterobacter aerogenes. Acta microbiol. Sin. 2001, 41, 82–86. [Google Scholar]
- Wen, C.-M.; Tseng, C.-S.; Cheng, C.-Y.; Li, Y.-K. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol. Appl. Biochem. 2002, 35, 213–219. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef]
- Liao, H.; Chen, D.; Yuan, L.; Zheng, M.; Zhu, Y.; Liu, X. Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr. Polym. 2010, 82, 600–604. [Google Scholar] [CrossRef]
- Lee, Y.; Park, I.-H.; Yoo, J.-S.; Chung, S.-Y.; Cho, Y.-S.; Ahn, S.-C.; Kim, C.-M.; Choi, Y.-L.; Lee, Y.-S.; Lee, Y.-C. Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresour. Technol. 2007, 98, 2734–2741. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
Materials | Description | References |
---|---|---|
Strains | ||
E. coli BL21 (DE3) | Type strain | Our Lab |
E. coli DH5α | Type strain | Our Lab |
B. subtilis WB800N | Type strain | Our Lab |
Plasmids | ||
pET-21a-Chi | pET-21a expression vector carrying the Chi gene, Amp + | GenScript |
pHS | E. coli-B. subtilis shuttle vector, Cm + | Our lab |
pHS-CotG | pHS derivative carrying the capsid protein CotG gene, Cm + | This work |
pHS-CotG-Chi | pHS derivative carrying the fusion CotG-Chi gene, Cm + | This work |
Primer sequences | ||
CotG-F | TACTACAAAAAACCGCACCAC | This work |
CotG-R | GTTGCTGTTCCTGTTCTGAAT | This work |
Chi-F | CGGACTAGTATGGCACCAGCTGATCAAGCATATAAAGTTG | This work |
Chi-R | CCCAAGCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGT | This work |
Buffer | ||
PBS buffer | 8 g NaCl, 0.2 g KCl, 1.42 g Na2HPO4, 0.27 g KH2PO4, pH 7.4 | This work |
Decoating extraction buffer | 1.5% SDS, 50 mM DTT | This work |
GTE buffer | 10 mM EDTA, 20 mM pH 7.5 Tris-HCI, 50 Mm glucose, 2 mg/mL lysozyme | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, M.; Xia, Y.; Alshaya, D.S.; Han, J.; Attia, K.A.; Shah, T.A.; Chen, H. Display of Bacterial Exochitanase on Bacillus subtilis Spores Improved Enzyme Stability and Recyclability. Molecules 2024, 29, 4302. https://doi.org/10.3390/molecules29184302
Ullah M, Xia Y, Alshaya DS, Han J, Attia KA, Shah TA, Chen H. Display of Bacterial Exochitanase on Bacillus subtilis Spores Improved Enzyme Stability and Recyclability. Molecules. 2024; 29(18):4302. https://doi.org/10.3390/molecules29184302
Chicago/Turabian StyleUllah, Mati, Yutong Xia, Dalal Sulaiman Alshaya, Jianda Han, Kotb A. Attia, Tawaf Ali Shah, and Huayou Chen. 2024. "Display of Bacterial Exochitanase on Bacillus subtilis Spores Improved Enzyme Stability and Recyclability" Molecules 29, no. 18: 4302. https://doi.org/10.3390/molecules29184302
APA StyleUllah, M., Xia, Y., Alshaya, D. S., Han, J., Attia, K. A., Shah, T. A., & Chen, H. (2024). Display of Bacterial Exochitanase on Bacillus subtilis Spores Improved Enzyme Stability and Recyclability. Molecules, 29(18), 4302. https://doi.org/10.3390/molecules29184302