Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis of SF-MnO/SNC Composite
3.2. Materials Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.-H.; Wang, P.; Gao, Z.; Li, X.; Cui, W.; Li, R.; Ramakrishna, S.; Zhang, J.; Long, Y.-Z. Review on electrospinning anode and separators for lithium ion batteries. Renew. Sust. Energ. Rev. 2024, 189, 113939. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, K.; Fan, Y.; Zhao, L.; Cheng, Z.; Yu, P.; Peng, J.; Wan, M. Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies. Molecules 2024, 29, 3624. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, C.; Xiao, Y.; Wu, Z.; Luo, Q.; Jiang, Z.; Wang, Z.; Zhang, L.; Cheng, S.; Yu, C. SnF2-induced multifunctional interface-stabilized Li5.5PS4.5Cl1.5-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2314306. [Google Scholar] [CrossRef]
- Ding, X.; Zhou, Q.; Li, X.; Xiong, X. Fast-charging anodes for lithium ion batteries: Progress and challenges. Chem. Commun. 2024, 60, 2472–2488. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Z.; Wang, L.; He, G.; Parkin, I.P.; Zhang, Y.; Yue, Y. Disordered materials for high-performance lithium-ion batteries: A review. Nano Energy 2024, 121, 109250. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Liu, R.; Li, X.; Wu, Y.; Ran, F. “Fast-Charging” Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS Nano 2024, 18, 2611–2648. [Google Scholar] [CrossRef]
- Xing, B.; Shi, F.; Jin, Z.; Zeng, H.; Qu, X.; Huang, G.; Zhang, C.; Xu, Y.; Chen, Z.; Lu, J. A facile ice-templating-induced puzzle coupled with carbonization strategy for kilogram-level production of porous carbon nanosheets as high-capacity anode for lithium-ion batteries. Carbon Energy 2024, e633. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Zhao, J.; Zhang, B.; Liu, L.; Bao, R.; Jing, Z. Sn-based anode materials for lithium-ion batteries: From mechanism to modification. J. Energy Storage 2024, 80, 109862. [Google Scholar] [CrossRef]
- Shen, D.; Jia, M.; Li, M.; Fu, X.; Liu, Y.; Dong, W.; Yang, S. High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life. Molecules 2023, 28, 3923. [Google Scholar] [CrossRef]
- Azad, A.K.; Abdalla, A.M.; Kumarasinghe, P.I.I.; Nourean, S.; Azad, A.T.; Ma, J.; Jiang, C.; Dawood, M.M.K.; Wei, B.; Patabendige, C.N.K. Developments and key challenges in micro/nanostructured binary transition metal oxides for lithium-ion battery anodes. J. Energy Storage 2024, 84, 110850. [Google Scholar] [CrossRef]
- Xu, H.; Gao, C.; Cheng, Z.; Kong, L.; Li, W.; Dong, X.; Lin, J. Metal oxyacid salts-confined pyrolysis towards hierarchical porous metal oxide@carbon (MO@C) composites as lithium-ion battery anodes. Nano Res. 2023, 16, 6903–6913. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Gao, T.; Liu, H.; Chen, C.; Li, J.; Xiao, D. Rational design and construction of iron oxide and titanium carbide MXene hierarchical structure with promoted energy storage properties for flexible battery. J. Colloid Interf. Sci. 2023, 631, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhao, X.; Zhao, H.; Liang, L.; Zhao, S.; Zhang, Y. Carbon-Coated MnO Quantum Dot-Decorated Three-Dimensional Graphene Aerogel Composite for High-Performance Lithium-Ion Batteries. Energy Fuels 2023, 37, 6240–6247. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Y.; Reddy, R.C.K.; Zeb, A.; Lin, X.; Sun, Y.-H. Carbon-encapsulated anionic-defective MnO/Ni open microcages: A hierarchical stress-release engineering for superior lithium storage. Carbon Energy 2023, 5, e226. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Zhao, X.; Peng, X.; Lin, X.; Ke, Y.; Xiao, X.; Zuo, X.; Nan, J. In situ anchoring of MnO nanoparticles into three-dimensional nitrogen-doped porous carbon framework as a stable anode for high-performance lithium storage. Appl. Surf. Sci. 2023, 614, 156217. [Google Scholar] [CrossRef]
- Huang, S.; Xu, G.; Wei, X.; Yang, L. Quasi-spherical N-doped Carbon aggregates embedded with massive MnO quantum dots as High-performance Anodes for Li ion batteries. Scripta Mater. 2024, 242, 115958. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, W.; Xiao, Z.; Li, S.; Chen, H.; Wang, Y.; Wang, Z.; Xi, W.; Xia, X.; Xie, S. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Mater. 2020, 33, 298–308. [Google Scholar] [CrossRef]
- Dong, S.; Geng, H.; Yue, W.; Zheng, S.; Pang, X.; Liang, J.; An, G.; Li, W.; Wang, B.; Lu, C. Single-Shell Multiple-Core MnO@C Hollow Carbon Nanospheres forLow-Temperature Lithium Storage. ACS Appl. Energy Mater. 2023, 6, 7877–7886. [Google Scholar] [CrossRef]
- Zhou, F.; Li, S.; Han, K.; Li, Y.; Liu, Y.-N. Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: Growth mechanism and electrochemical performance. Dalton Trans. 2021, 50, 535–545. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, Q.; Dong, H.; Li, J.; Tang, Z.; Wang, X.; Ouyang, J.; Liu, T. N-doped carbon coated porous hierarchical MnO microspheres as superior additive-free anode materials for lithium-ion batteries. Scr. Mater. 2022, 211, 114495. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, C.; Lin, X.; Xu, C.; Xu, X.; Luo, Y. Metal−Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery. ACS Nano 2021, 15, 4594–4607. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, K.; Yu, H.; Shah, T.; Zhang, Q.; Zhang, B. Highly monodisperse dumbbell-like yolk-shell manganese monoxide/carbon microspheres for lithium storage and their lithiation evolution. Carbon 2020, 170, 37–48. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, X.; Liang, L.; Li, R.; Fan, P.; Li, J.; Zhao, H. Double-network aerogel-derived spongy 3D porous MnO/C composite for lithium-ion batteries with increasing capacity. J. Alloys Compd. 2023, 948, 169799. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Y.; Zhang, Y.; Li, J.; Xu, Y.; Fang, Z.; Yang, J.; Wu, M. Facile green and sustainable synthesis of MnO@rGO as electrochemically stable anode for lithium-ion batteries. Mater. Lett. 2022, 325, 132761. [Google Scholar] [CrossRef]
- Huang, S.; Li, H.; Xu, G.; Liu, X.; Zhang, Q.; Yang, L.; Cao, J.; Wei, X. Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries. Electrochim. Acta 2020, 342, 136115. [Google Scholar] [CrossRef]
- Yao, W.; Qiu, W.; Xu, Z.; Xu, J.; Luo, J.; Wen, Y. Two-dimensional sulfur-doped Mn3O4 quantum dots/reduced graphene oxide nanosheets as high-rate anode materials for lithium storage. Ceram. Int. 2018, 44, 21734–21741. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Z.; Hu, Z.; Wang, L.; Ma, R.; Wang, J. Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage. Small 2020, 16, 2003643. [Google Scholar] [CrossRef]
- He, S.; Wu, H.; Li, S.; Liu, K.; Yang, Y.; Pan, H.; Yu, X. Small but mighty: Empowering sodium/potassium-ion battery performance with S-doped SnO2 quantum dots embedded in N, S codoped carbon fiber network. Carbon Energy 2024, 6, e486. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, Y.; Du, C.; Chen, X.; Li, J.; Zheng, Y.; Feng, Q.; Huang, Z. Fluorine-doped MnO@fluorographene with high conductivity for improved capacity and prolonged cycling stability of lithium-ion anode. J. Alloys Compd. 2023, 945, 169255. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, L.; Yu, Z.; Li, C.; Wen, Z.; Xie, J.; Hu, Y.; Wang, W.; Hong, G. Hierarchical Stratiform of a Fluorine-Doped NiO Prism as an Enhanced Anode for Lithium-Ion Storage. J. Phys. Chem. Lett. 2021, 12, 11460–11469. [Google Scholar] [CrossRef]
- Lin, Y.; Zhong, K.; Zheng, J.; Liang, M.; Xu, G.; Feng, Q.; Li, J.; Huang, Z. Fluorine-Doped GeO2@C Composite with Abundant Oxygen Vacancies for High-Capacity Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 9848–9857. [Google Scholar] [CrossRef]
- He, L.; Sun, W.; Sun, K.; Mao, Y.; Deng, T.; Fang, L.; Wang, Z.; Chen, S. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage. J. Power Sources 2022, 526, 231019. [Google Scholar] [CrossRef]
- Ruan, J.; Yuan, T.; Pang, Y.; Luo, S.; Peng, C.; Yang, J.; Zheng, S. Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries. Carbon 2018, 126, 9–16. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, K.; Wang, Y.; Li, H.; Jiang, H.; Chen, L. N, S co-doped carbon confined MnO/MnS heterostructures derived from a one-step pyrolysis of Mn-methionine frameworks for advanced lithium storage. J. Alloys Compd. 2021, 860, 158451. [Google Scholar] [CrossRef]
- Qi, R.; Jiang, Q.; Zhong, M.; Li, W.; Ren, S.; Wang, Y.; Feng, M.; Lu, X. Manipulating d-band center of bimetallic Sn-alloy coupling with carbon nanofibers for high-performance electrocatalytic production of ammonia from nitrate. Chem. Eng. J. 2024, 496, 154094. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, Y.; Zhou, L.; Chen, X.; Huang, S.; Liu, L.; Liu, H.; Dou, S.; Xu, J. Ball-Milling Synthesis of Richly Oxygenated Graphene-Like Nanoplatelets from used Lithium Ion Batteries and Its Application for High Performance Sodium Ion Battery Anode. Adv. Funct. Mater. 2024, 34, 2314160. [Google Scholar] [CrossRef]
- Ma, S.; Chen, D.; Wang, W.-L. MnO nanoparticles embedded in a carbon matrix as high performance lithium-ion battery anodes: Preparation, microstructure and electrochemistry. Phys. Chem. Chem. Phys. 2016, 18, 19130–19136. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. Engineering Hybrid between MnO and N-Doped Carbon to Achieve Exceptionally High Capacity for Lithium-Ion Battery Anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.-H.; Zhao, L.-L.; Wang, P.-F.; Xie, Y.; Yi, T.-F. Well-dispersed Sb particles embedded on N-doped carbon nanofibers toward high-performance Li-ion battery. Rare Met. 2024, 43, 2994–3006. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, J.; Ye, Q.; Chen, Y.; Jia, H.; Huang, X.; Ying, S. Coral-like CoSe2@N-doped carbon with a high initial coulombic efficiency as advanced anode materials for Na-ion batteries. Dalton Trans. 2024, 53, 765–771. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Xu, C.-X.; Ren, W.-Q.; Hu, L.-Y.; Fu, W.-B.; Wang, W.; Yin, H.; He, B.-H.; Hou, Z.-H.; Chen, L. Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 2023, 42, 929–939. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, S.; Luo, W.; Li, K.; Yang, X. N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries. Molecules 2024, 29, 2939. [Google Scholar] [CrossRef] [PubMed]
- Galakhov, V.R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N.A.; Kurmaev, E.Z.; Logachevskaya, N.I.; Mukovskii, Y.M.; Mitchell, J.; Ederer, D.L. Mn3s exchange splitting in mixed-valence manganites. Phys. Rev. B 2002, 65, 113102. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Cheng, X.; Gao, S.; Zhang, X.; Zhao, H.; Huo, L. Coordination polymer-derived hierarchically structured MnO/NC composites as anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 2023, 941, 168847. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Li, C.; Si, X.; Zheng, X.; Cai, Y.; Lin, J.; Liang, H.; Qi, J.; Cao, J.; et al. Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors. J. Mater. Chem. A 2019, 7, 6686–6694. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, K.; Jr, R.L.S.; Qi, X. Metal sulfide enhanced metal–organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. J. Mater. Chem. A 2023, 11, 6375–6383. [Google Scholar] [CrossRef]
- Shim, K.; Kim, H.W.; Park, S.; Seo, K.-D.; Kim, C.-Y.; Lee, J.B.; Bae, J.S.; Kim, H.J. MnS/MnO-coated N, S-doped Carbon Anode obtained from a Mn(II)-coordinated Polymer for Long-cycle Life Li-ion Batteries. Mater. Adv. 2024, 5, 3014–3021. [Google Scholar] [CrossRef]
- Peng, C.; Yue, L.; Cui, Y.; He, X.; Xu, S.; Guo, C.; Guo, M.; Chen, H. Preparation of Cu7.2S4@N, S co-doped carbon honeycomb-like composite structure for high-rate and high-stability sodium-ion storage. J. Colloid Interf. Sci. 2023, 648, 527–534. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Wu, J.; Meng, L.; Zhang, D.; Zhang, X.; Li, L. VN nanocrystals on N, S co-doped carbon framework: Topochemical self-nitridation and superior performance for lithium-ion battery. Electrochim. Acta 2022, 429, 140982. [Google Scholar] [CrossRef]
- Zheng, F.; Deng, Q.; Zhong, W.; Ou, X.; Pan, Q.; Liu, Y.; Xiong, X.; Yang, C.; Chen, Y.; Liu, M. Fluorine-Doped Carbon Surface Modification of Li-Rich Layered Oxide Composite Cathodes for High Performance Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 16399–16411. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, K.; Li, H.; Hu, J.; Zheng, M. Enhanced Ion Transport Through Mesopores Engineered with Additional Adsorption of Layered Double Hydroxides Array in Alkaline Flow Batteries. Small 2024, 20, 2308791. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Jang, H.Y.; Leem, H.J.; Lee, M.A.; Kim, W.; Kim, J.; Song, J.H.; Yu, J.; Mun, J.; Back, S.; et al. Surface Work Function-Induced Thermally Vulnerable Solid Electrolyte Interphase Formation on the Negative Electrode for Lithium-Ion Batteries. Adv. Energy Mater. 2024, 14, 2302906. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Zhang, J.; Sheng, J.; He, T.; Tian, M.; Zhao, Y.; Xie, C.; Mai, L.; Mu, S. Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2017, 9, 12680–12686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, G.; Fan, J.; Li, B.; Li, L. In Situ Synthesis of Mn3O4 Nanoparticles on Hollow Carbon Nanofiber as High-Performance Lithium-Ion Battery Anode. Chem. Eur. J. 2018, 24, 9632–9638. [Google Scholar] [CrossRef]
- Wang, R.; Cao, L.; Li, J.; Xu, Z.; Huang, J.; Cui, Y.; Wang, C. Design of dual-carbon modified MnO electrode improves adsorption and conversion reaction in Li-ion batteries. Ceram. Int. 2018, 44, 3248–3254. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Yin, S.; Cai, W.; Wang, Q.; Wu, H.; Wu, K.; Zhang, Y. Rational Design of Space-Confined Mn-Based Heterostructures with Synergistic Interfacial Charge Transport and Structural Integrity for Lithium Storage. Inorg. Chem. 2022, 61, 8366–8378. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef]
- Luo, Q.; Ming, L.; Zhang, D.; Wei, C.; Wu, Z.; Jiang, Z.; Liu, C.; Liu, S.; Cao, K.; Zhang, L. Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances. Energy Mater. Adv. 2023, 4, 0065. [Google Scholar] [CrossRef]
- Xiao, P.; Wang, Z.; Long, K.; Yang, J.; Liu, X.; Ling, C.; Chen, L.; Mei, L. Stable cycling and low-temperature operation utilizing amorphous carbon-coated graphite anodes for lithium-ion batteries. RSC Adv. 2024, 14, 13277–13285. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Xu, P.; Wang, C.; Gao, F.; Zhao, D.; Liu, S.; Yang, H.; Wang, D.; Niu, C.; et al. Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries. Nano-Micro Lett. 2022, 14, 5. [Google Scholar] [CrossRef]
- Tian, Q.; Luo, C.; Yang, D.; Wang, X.; Chen, M. A facile preparation route of MnO@C composite for high lithium storage anode. Chem. Phys. Lett. 2024, 839, 141113. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, X.; Zhou, Q.; Qi, C.; Wang, Q.; Shi, F.; Zhu, M.; Chen, G.; Wang, D.; Liu, X.; et al. Herringbone packed contorted aromatics with ordered three-dimensional channels as fast-charging and low-temperature lithium-ion battery anodes. J. Mater. Chem. A 2024, 12, 7005–7014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, C.; Huo, Z.; Sun, J.; Liu, G.; Liu, X.; Yu, C. Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material. Molecules 2024, 29, 4306. https://doi.org/10.3390/molecules29184306
Zhang D, Zhang C, Huo Z, Sun J, Liu G, Liu X, Yu C. Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material. Molecules. 2024; 29(18):4306. https://doi.org/10.3390/molecules29184306
Chicago/Turabian StyleZhang, Dan, Chunyan Zhang, Zhe Huo, Jia Sun, Guangyin Liu, Xiaodi Liu, and Chuang Yu. 2024. "Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material" Molecules 29, no. 18: 4306. https://doi.org/10.3390/molecules29184306
APA StyleZhang, D., Zhang, C., Huo, Z., Sun, J., Liu, G., Liu, X., & Yu, C. (2024). Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material. Molecules, 29(18), 4306. https://doi.org/10.3390/molecules29184306