One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Behavior and Kinetic Analysis of Lignin
2.2. Physicochemical Properties of Biochar
2.2.1. Porosity Analysis
2.2.2. Surface Functional Group Analysis
2.2.3. Surface Morphology Analysis
2.2.4. Crystalline Mineral Analysis
2.3. Adsorption Performance of Industrial Alkali Lignin-Based Biochars
2.3.1. Effect of Pb(II) Initial Concentration
2.3.2. Effect of Contact Time
2.3.3. Effect of Ambient Temperature
2.3.4. Effect of Solution pH
2.4. Potential Adsorption Mechanism Analysis
2.4.1. Adsorption Isotherm Analysis
2.4.2. Adsorption Kinetic Analysis
2.4.3. Thermodynamic Analysis
3. Materials and Methods
3.1. Raw Materials and Reagents
3.2. Preparation of Biochar
3.3. Characterization of Samples
3.4. Pb(II) Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sethupathy, S.; Murillo Morales, G.; Gao, L.; Wang, H.; Yang, B.; Jiang, J.; Sun, J.; Zhu, D. Lignin valorization: Status, challenges and opportunities. Bioresour. Technol. 2022, 347, 126696. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pu, Y.; Ragauskas, A.; Yang, B. From lignin to valuable products-strategies, challenges, and prospects. Bioresour. Technol. 2019, 271, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Poornima Devi, T.; Gunasekaran, M.; Kim, S.-H.; Kumar, G. A review on biopolymer production via lignin valorization. Bioresour. Technol. 2019, 290, 121790. [Google Scholar] [CrossRef] [PubMed]
- Supanchaiyamat, N.; Jetsrisuparb, K.; Knijnenburg, J.T.N.; Tsang, D.C.W.; Hunt, A.J. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour. Technol. 2019, 272, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Q.; Liu, Y.; Xu, N.; Xu, J.C. Concentration, sources, influencing factors and hazards of heavy metals in indoor and outdoor dust: A review. Environ. Chem. Lett. 2023, 21, 1203–1230. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Fu, Z.S.; Xi, S.H. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- García-Niño, W.R.; Pedraza-Chaverrí, J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem. Toxicol. 2014, 69, 182–201. [Google Scholar] [CrossRef]
- Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I.; et al. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Lin, G.; Zeng, B.; Li, J.; Wang, Z.Y.; Wang, S.X.; Hu, T.; Zhang, L.B. A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chem. Eng. J. 2023, 460, 141710. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.H.; Chang, J.S. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021, 402, 123431. [Google Scholar] [CrossRef] [PubMed]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.S.; Ma, Z.H.; Yang, K.Q.; Cui, Q.L.; Wang, K.; Wang, T.T.; Wu, G.L.; Zheng, J.Y. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars. Sci. Total Environ. 2020, 699, 134223. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.X.; Liu, Y.H.; Xing, B.S. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut. 2020, 231, 404. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Wang, Z.; Li, F.; Li, J.; Xue, W.; Zhao, X. Enhanced Adsorption of Aqueous Pb(II) by Acidic Group-Modified Biochar Derived from Peanut Shells. Water 2024, 16, 1871. [Google Scholar] [CrossRef]
- Manikandan, S.K.; Pallavi, P.; Shetty, K.; Bhattacharjee, D.; Giannakoudakis, D.A.; Katsoyiannis, I.A.; Nair, V. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. Molecules 2023, 28, 719. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; He, Y.; Wang, H.; Deng, Q.; Mi, B.; Wu, F. Microwave-assisted pyrolysis of waste lignin to prepare biochar for Cu2+ highly-efficient adsorption: Performance, kinetics and mechanism resolution. Sep. Purif. Technol. 2024, 342, 127070. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, A.; Jiang, E.; Qin, L. Pyrolysis of industrial waste lignin: Analysis of product yields and character. Energy Sources Part A 2017, 39, 458–464. [Google Scholar] [CrossRef]
- Li, J.; Ye, X.; Burra, K.G.; Wang, Z.; Liu, X.; Gupta, A.K. Effects of Na-salt solutions on the biomass pyrolysis and CO2-assisted gasification behavior. J. Energy Inst. 2024, 116, 101734. [Google Scholar] [CrossRef]
- Guo, D.-l.; Wu, S.-b.; Liu, B.; Yin, X.-l.; Yang, Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl. Energy 2012, 95, 22–30. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Wu, C.; Gu, S. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals. Energy Convers. Manag. 2018, 172, 32–38. [Google Scholar] [CrossRef]
- Zhou, L.; Zou, H.; Wang, Y.; Le, Z.; Liu, Z.; Adesina, A.A. Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Renew. Energy 2017, 102, 134–141. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2017, 46, 389–414. [Google Scholar] [CrossRef]
- Gao, Y.; Li, L.; Jin, Y.M.; Wang, Y.; Yuan, C.J.; Wei, Y.J.; Chen, G.; Ge, J.J.; Lu, H.Y. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Appl. Energy 2015, 153, 41–47. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 2017, 116, 448–455. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nuriahmetov, I.F.; Khaidarov, A.A.; Pavlikov, A.V.; Minnebaev, K.F. The Field-Effect Transistor Based on a Polyyne–Polyene Structure Obtained via PVDC Dehydrochlorination. J. Compos. Sci. 2023, 7, 264. [Google Scholar] [CrossRef]
- Qin, K.; Wang, Z.; Zhang, H. Evolution of surface functional groups in the pyrolysis of lignin with the introduction of polyethylene and transition metals. CIESC J. 2022, 73, 5201–5210. [Google Scholar]
- Garba, M.U.; Inalegwu, A.; Musa, U.; Aboje, A.A.; Kovo, A.S.; Adeniyi, D.O. Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes. Biomass Convers. Biorefin. 2018, 8, 143–150. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.H.; Tang, T.D. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers. J. Zhejiang Univ.-Sci. A 2008, 9, 720–726. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Hu, P.; Zhou, X.; Zhou, H.; Wang, D.; Lu, X.; Mi, B. Comparison of properties, adsorption performance and mechanisms to Cd(II) on lignin-derived biochars under different pyrolysis temperatures by microwave heating. Environ. Technol. Innov. 2022, 25, 102196. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Hu, P.; Wang, Y.; Deng, J.; Mi, B. Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment. Bioresour. Technol. 2021, 322, 124539. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Z.; Gao, C.; Sun, Q.; Liu, J.; She, D. Synthesis of honeycomb lignin-based biochar and its high-efficiency adsorption of norfloxacin. Bioresour. Technol. 2023, 369, 128402. [Google Scholar] [CrossRef]
- Ahmed, W.; Mehmood, S.; Núñez-Delgado, A.; Ali, S.; Qaswar, M.; Shakoor, A.; Mahmood, M.; Chen, D.-Y. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Sci. Total Environ. 2021, 784, 147136. [Google Scholar] [CrossRef]
- Yang, W.; Lu, C.; Liang, B.; Yin, C.; Lei, G.; Wang, B.; Zhou, X.; Zhen, J.; Quan, S.; Jing, Y. Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar. Separations 2023, 10, 438. [Google Scholar] [CrossRef]
- Kılıç, M.; Kırbıyık, Ç.; Çepelioğullar, Ö.; Pütün, A.E. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl. Surf. Sci. 2013, 283, 856–862. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Dinh, V.-P.; Nguyen, D.-K.; Luu, T.-T.; Nguyen, Q.-H.; Tuyen, L.A.; Phong, D.D.; Kiet, H.A.T.; Ho, T.-H.; Nguyen, T.T.P.; Xuan, T.D.; et al. Adsorption of Pb(II) from aqueous solution by pomelo fruit peel-derived biochar. Mater. Chem. Phys. 2022, 285, 126105. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Xu, J.; Yellezuome, D.; Liu, R.H. Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (II) adsorption properties in aqueous solutions. J. Anal. Appl. Pyrolysis 2021, 157, 105214. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, X.; Cai, H.; Ma, Z.; Liang, H. Study on the Adsorption of CuFe2O4-Loaded Corncob Biochar for Pb(II). Molecules 2020, 25, 3456. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Z.; Kong, Y.; Song, Q.; Wang, K. Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms. J. Ind. Eng. Chem. 2014, 20, 4429–4436. [Google Scholar] [CrossRef]
- Qin, K.; Li, J.; Wang, Z.; Zhang, H. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment. CIESC J. 2022, 73, 5263–5274. [Google Scholar]
- Wang, Z.; Shen, D.; Shen, F.; Wu, C.; Gu, S. Equilibrium, kinetics and thermodynamics of cadmium ions (Cd2+) removal from aqueous solution using earthworm manure-derived carbon materials. J. Mol. Liq. 2017, 241, 612–621. [Google Scholar] [CrossRef]
E (J/mol) | A (1/min) | R2 | |
---|---|---|---|
IALG | 14.27 | 5.78 | 0.9982 |
A-IALG | 38.44 | 10.39 | 0.9896 |
Specific Surface Area (m2/g) | Mesopore Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Mesopore Pore Volume (cm3/g) | |
---|---|---|---|---|
IALG-BC | 106.65 | 38.09 | 0.09 | 0.02 |
A-IALG-BC | 2.81 | 0.91 | 0.01 | / |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Qm (mg/g) | Kl (L/mg) | R2 | Kf (mg(1−n)Ln/g) | n | R2 | |
IALG-BC | 809.09 | 0.005 | 0.997 | 12.69 | 1.50 | 0.961 |
A-IALG-BC | 20.85 | 0.003 | 0.995 | 0.66 | 2.12 | 0.965 |
No. | Biochars | Adsorption Conditions | Theoretical Maximum Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|---|
1 | From peanut shells via pyrolysis at 300 °C for 2 h. | Initial concentration in the range of 50–2000 mg/L at 25 °C for 3 h. | 210.10 | [18] |
2 | From pomelo fruit peels via pyrolysis at 500 °C for 45 min. | At 30 °C with solution pH of 5 for 2 h. | 92.13 | [43] |
3 | From cotton straw via pyrolysis at 300 °C for 2 h. | Initial concentration in the range of 5–300 mg/L at 25 °C with solution pH of 5.5 for 12 h. | 102.70 | [44] |
4 | From corn stalks via pyrolysis at 300 °C for 1 h. | Initial concentration in the range of 80–500 mg/L at 30 °C with solution pH of 5 for 8 h. | 15.66 | [45] |
5 | From corn stalks via pyrolysis at 500 °C for 2 h. | Initial concentration in the range of 100–1000 mg/L at 25 °C with solution pH of 5 for 4 h. | 40.98 | [39] |
6 | From sewage sludge via pyrolysis at 700 °C for 1 h. | Initial concentration in the range of 5–300 mg/L at room temperature for 24 h. | 7.56 | [46] |
7 | From industrial alkali lignin via pyrolysis at 700 °C for 2 h (IALG-BC). | Initial concentration in the range of 50–1000 mg/L at 25 °C with solution pH of 5 for 4 h. | 809.09 | This work |
qe | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|
k1 (1/h) | Qe (mg/g) | R2 | k2 (g/(mgh)) | Qe (mg/g) | R2 | ||
IALG-BC | 92.82 | 7.08 | 89.97 | 0.906 | 0.15 | 92.96 | 0.991 |
A-IALG-BC | 12.95 | 0.77 | 10.69 | 0.924 | 0.06 | 13.03 | 0.989 |
ΔG0 (kJ/mol) | ΔH0 | ΔS0 | ||||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | kJ/mol | J/(mol K) | |
IALG-BC | −12.77 | −15.82 | −17.00 | −20.81 | 59.75 | 251.99 |
A-IALG-BC | −2.11 | −3.97 | −4.80 | −6.08 | 34.56 | 128.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, T.; Wang, Z. One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability. Molecules 2024, 29, 4310. https://doi.org/10.3390/molecules29184310
Li J, Liu T, Wang Z. One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability. Molecules. 2024; 29(18):4310. https://doi.org/10.3390/molecules29184310
Chicago/Turabian StyleLi, Jiale, Taoze Liu, and Zhanghong Wang. 2024. "One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability" Molecules 29, no. 18: 4310. https://doi.org/10.3390/molecules29184310
APA StyleLi, J., Liu, T., & Wang, Z. (2024). One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability. Molecules, 29(18), 4310. https://doi.org/10.3390/molecules29184310