Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina (Arthrospira platensis)
Abstract
:1. Introduction
2. Results and Discussion
2.1. VOCs from Honey
2.2. GC–MS Analysis of Dried Honey Extracts
2.3. Physico-Chemical Results
2.4. Total Phenolic Content (TPC), Total Antioxidant Capacity (TAC), and Protein Content Results
3. Materials and Methods
3.1. Materials
3.2. SPME Sampling
3.3. Extraction and Derivatization of Dried Honey Samples
3.4. GC–MS Analysis
3.5. Physico-Chemical Analysis
3.6. TAC, TPC, and Protein Content Determinations
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 2012, 5, 618–625. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; Tastemur, B.; Sagdic, O.; Dogan, M.; Kayacier, A. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind. Crops Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Moreira, R.F.A.; Maria, C.A.B.; Pietroluongo, M.; Trugo, L.C. Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chem. 2010, 121, 697–704. [Google Scholar] [CrossRef]
- Chernetsova, E.S.; Morlock, G.E. Assessing the capabilities of direct analysis in real time mass spectrometry for 5-hydroxymethylfurfural quantitation in honey. Int. J. Mass Spectrom. 2012, 314, 22–32. [Google Scholar] [CrossRef]
- Barra, M.P.G.; Ponce-Díaz, M.C.; Venegas-Gallegos, C. Volatile compounds in honey produced in the central valley of Ñuble Province, Chile. Chil. J. Agric. Res. 2010, 70, 75–84. [Google Scholar]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Wang, Y.; Juliani, R.; Simon, J.E.; Ho, C. Amino acid-dependent formation pathways of 2-acetylfuran and 2,5-dimethyl-4-hydroxy-3[2H]-furanone in the Maillard reaction. Food Chem. 2009, 115, 233–237. [Google Scholar] [CrossRef]
- Kamal, M.A.; Klein, P. Determination of sugars in honey by liquid chromatography. Saudi J. Biol. Sci. 2001, 18, 17–21. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Venskutonis, P.R.; Ceksteryte, V. Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. Food Sci. Technol. 2010, 43, 801–807. [Google Scholar]
- Rybak-Chmielewska, H. Changes in the carbohydrate composition of honey undergoing during storage. J. Apic. Res. 2007, 51, 39–48. [Google Scholar]
- Mato, I.S.; Huidobro, J.F.; Simal-Lozano, J.S.; Sancho, M.T. Rapid determination of nonaromatic organic acids in honey by capillary zone electrophoresis with direct ultraviolet detection. J. Agric. Food Chem. 2006, 54, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Cavia, M.M.; Fernández-Muino, M.A.; Alonso-Torre, S.R.; Huidobro, J.F.; Sancho, M.T. Evolution of acidity of honeys from continental climates: Influence of induced granulation. Food Chem. 2007, 100, 1728–1733. [Google Scholar] [CrossRef]
- Iglesias, M.T.; Martian-Alvarez, P.J.; Polo, M.C.; Lorenzo, C.; Gonzalez, M.; Pueyo, E.N. Changes in the free amino acid contents of honeys during storage at ambient temperature. J. Agric. Food Chem. 2006, 54, 9099–9104. [Google Scholar] [CrossRef] [PubMed]
- Pontes, M.; Marques, J.C.; Câmara, J.S. Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta 2007, 74, 91–103. [Google Scholar] [CrossRef]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Guldas, M.; Irkin, R. Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo 2010, 60, 237–243. [Google Scholar]
- Jerković, I.; Marijanović, Z.; Ljubičić, I.; Gugić, M. Contribution of the bees and combs to honey volatiles: Blank-trial probe for chemical profiling of honey biodiversity. Chem. Biodivers. 2010, 7, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Soria, A.C.; Sanz, J.; Martínez-Castro, I. SPME followed by GC-MS: A powerful technique for qualitative analysis of honey volatiles. Eur. Food Res. Technol. 2009, 228, 579–590. [Google Scholar] [CrossRef]
- Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.R.; Čeksterytė, V. Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chem. 2008, 111, 988–997. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in paste products-Part 1: Preparation and evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Tanska, M.; Konopka, I.; Ruszkowska, M. Sensory, physico-chemical and water sorption properties of corn extrudates enriched with Spirulina. Plant Food Hum. Nutr. 2017, 72, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Gas chromatographic determination of 29 organic acids in foodstuffs after continuous solid-phase extraction. Talanta 2011, 84, 924–930. [Google Scholar] [CrossRef]
- Basuny, A.M.; AbdelAziz, K.R.; Bikheet, M.M.; Shaban, M.M.; AboelAnin, M.A. Enhancing the Nutritional Value and Chemical Composition of Functional Yogurt Drink by Adding Bee Honey and Spirulina Powder. J. Agric. Food Chem. 2023, 14, 23–30. [Google Scholar] [CrossRef]
- Janda-Milczarek, K.; Szymczykowska, K.; Jakubczyk, K.; Kupnicka, P.; Skonieczna-Żydecka, K.; Pilarczyk, B.; Dalewski, B. Spirulina supplements as a source of mineral nutrients in the daily diet. Appl. Sci. 2023, 13, 1011. [Google Scholar] [CrossRef]
- Taiti, C.; Guardigli, G.; Babbini, S.; Marone, E.; Masi, E.; Comparini, D.; Mancuso, S. Characterization of Italian honeys: Integrating volatile and physico-chemical data. Adv. Hortic. Sci. 2023, 37, 329–341. [Google Scholar] [CrossRef]
- Taiti, C.; Di Vito, M.; Di Mercurio, M.; Costantini, L.; Merendino, N.; Sanguinetti, M.; Bugli, F.; Garzoli, S. Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Appl. Sci. 2023, 14, 67. [Google Scholar] [CrossRef]
- Fallico, B.; Zappala, M.; Arena, E.; Verzera, A. Effects of conditioning on HMF content in unifloral honeys. Food Chem. 2004, 85, 305–313. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Illuminati, S.; Finale, C.; Rossetti, M.; Scarponi, G. Determination of very low levels of 5-(hydroxymethyl)-2-furaldehyde (HMF) in natural honey: Comparison between the HPLC technique and the spectrophotometric white method. J. Food Sci. 2012, 77, C784–C790. [Google Scholar] [CrossRef]
- Geană, E.I.; Ciucure, C.T.; Costinel, D.; Ionete, R.E. Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Control 2020, 109, 106919. [Google Scholar] [CrossRef]
- González-Ceballos, L.; Cavia, M.D.M.; Fernández-Muiño, M.A.; Osés, S.M.; Sancho, M.T.; Ibeas, S.; García, F.C.; García, J.M.; Vallejos, S. A Simple One-Pot Determination of Both Total Phenolic Content and Antioxidant Activity of Honey by Polymer Chemosensors. Food Chem. 2021, 342, 128300. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of Gluten-Free Bread Using Tartary Buckwheat and Chia Flour Rich in Flavonoids and Omega-3 Fatty Acids as Ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- AOAC International (Ed.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
N° | Component 1 | LRI 2 | LRI 3 | Wildflower Honey | Wildflower Honey + Spirulina |
---|---|---|---|---|---|
1 | 3-hexen-1-yne | 623 | 625 | 8.0 ± 0.05 | - |
2 | 3-butyn-1-ol | 662 | 660 | 0.5 ± 0.02 | - |
3 | glutaraldehyde | 890 | 895 | 0.7 ± 0.03 | - |
4 | santolina alcohol | 1038 | 1041 | 2.4 ± 0.08 | - |
5 | linalool oxide | 1060 | 1056 | - | 0.3 ± 0.02 |
6 | isomyrcenol | 1075 | 1072 | 2.7 ± 0.02 | - |
7 | α-linalool | 1091 | 1085 | 5.9 ± 0.03 | - |
8 | nonanal | 1107 | 1104 | - | 1.7 ± 0.03 |
9 | hotrienol | 1110 | 1114 | 36.5 ± 0.15 | 2.1 ± 0.04 |
10 | nerol oxide | 1140 | 1137 | 2.7 ± 0.02 | - |
11 | nonanoic acid | 1265 | 1260 | 7.2 ± 0.04 | - |
12 | borneol acetate | 1273 | 1270 | 4.2 ± 0.02 | - |
13 | dehydro-ar-ionene | 1338 | 1336 | - | 1.1 ± 0.03 |
14 | (Z)-β-damascenone | 1390 | 1382 | - | 0.2 ± 0.02 |
15 | trans-β-ionone | 1465 | 1460 | - | 2.3 ± 0.03 |
16 | pentadecane | 1510 | 1512 | - | 0.6 ± 0.02 |
17 | lauric acid | 1555 | 1561 | 2.3 ± 0.02 | tr |
18 | hexadecane | 1611 | 1612 | - | 0.8 ± 0.04 |
19 | heptadecane | 1708 | 1711 | - | 9.8 ± 0.05 |
20 | palmitic acid | 1945 | 1951 | 17.8 ± 0.11 | 24.3 ± 0.12 |
21 | 14-octadecenal | 2000 | 2007 | 2.5 ± 0.02 | - |
22 | oleic acid | 2138 | 2141 | 5.0 ± 0.03 | 15.9 ± 0.09 |
23 | elaidic acid | 2145 | 2144 | tr | 40.7 ± 0.22 |
24 | stearic acid | 2168 | 2172 | 1.6 ± 0.04 | tr |
SUM | 100.0 | 99.8 | |||
Monoterpenoids | 5.1 | 2.8 | |||
Monoterpenes | 12.8 | - | |||
Fatty acids | 33.9 | 80.9 | |||
Others | 48.2 | 16.1 |
N° | Components | Wildflower Honey | Wildflower Honey + Spirulina |
---|---|---|---|
Carboxylic Acids | |||
1 | hydracrylic acid | - | 0.3 ± 0.03 |
2 | glycolic acid | tr | 0.6 ± 0.03 |
3 | benzoic acid | tr | 0.2 ± 0.03 |
4 | 3-butenoic acid | tr | 0.3 ± 0.03 |
5 | 3-methyl-2-furoic acid | - | 2.4 ± 0.03 |
6 | lactic acid | tr | - |
Alcohols | |||
7 | 1-cyclopentanol | - | 0.8 ± 0.03 |
8 | 2-ethoxyethanol | - | 0.4 ± 0.03 |
9 | 3-octen-2-ol, (E)- | - | 0.1 ± 0.03 |
10 | phenol | tr | - |
Carbohydrates and Carbohydrate Derivatives | |||
11 | glycerol | tr | 3.2 ± 0.05 |
12 | ribitol | 0.1 ± 0.01 | 0.3 ± 0.02 |
13 | myo-inositol | 10.6 ± 0.06 | 0.1 ± 0.00 |
14 | D-gluconic acid | 0.6 ± 0.03 | - |
15 | D-talofuranose | 0.2 ± 0.02 | 1.2 ± 0.03 |
16 | D-tagatofuranose | 0.4 ± 0.02 | 4.2 ± 0.05 |
17 | D-ribofuranose | 0.2 ± 0.02 | 15.7 ± 0.09 |
18 | D-fructofuranose | 28.3 ± 0.14 | 29.7 ± 0.11 |
19 | D-erythrose | 0.3 ± 0.02 | - |
20 | D-fructose | 21.1 ± 0.15 | 13.3 ± 0.08 |
21 | D-glucose | 6.3 ± 0.03 | 1.8 ± 0.04 |
22 | psicofuranose | 0.4 ± 0.02 | 1.0 ± 0.03 |
23 | L-sorbofuranose | 0.2 ± 0.02 | 4.4 ± 0.05 |
24 | β-D-glucopyranose | 25.6 ± 0.15 | 3.5 ± 0.03 |
25 | β-D-xylofuranose | 0.2 ± 0.02 | - |
26 | 2-deoxypentofuranose | - | 3.7 ± 0.03 |
27 | D-mannopyranose | 0.1 ± 0.01 | - |
28 | dihydroxyacetone | - | 2.9 ± 0.02 |
29 | levoglucosan | 0.6 ± 0.02 | - |
30 | turanose | 1.5 ± 0.02 | - |
31 | lactulose | 1.3 ± 0.03 | - |
32 | uridine | 0.2 ± 0.02 | 4.5 ± 0.03 |
Others | |||
33 | diethylene glycol | - | 3.3 ± 0.03 |
34 | furfuryl alcohol | - | 0.4 ± 0.02 |
35 | cadalene | 0.5 ± 0.02 | - |
36 | carvacrol | 0.1 ± 0.01 | - |
37 | trans-calamenene | 0.1 ± 0.00 | - |
38 | phloroglucinol | - | 0.6 ± 0.02 |
Physico-Chemical Data | Wildflower Honey | Wildflower Honey + Spirulina |
---|---|---|
Brix% | 81.77 ± 0.25 | 82.10 ± 0.40 |
Moisture content (%) | 16.80 ± 0.20 | 15.90 * ± 0.10 |
EC (mS/cm) | 0.74 ± 0.02 | 0.88 * ± 0.02 |
pH | 4.47 ± 0.06 | 4.37 ± 0.06 |
HMF (mg/kg) | 2.40 ± 0.10 | 8.13 * ± 0.47 |
TPC mg GAE/g EP | FRAP µmol Fe2+E/g EP | ABTS•+ µmol TE/g EP | Protein Content g/100 g EP | |
---|---|---|---|---|
Wildflower Honey | 0.88 ± 0.03 b | 221.19 ± 11.67 a | 235.63 ± 6.39 b | 0.48 ± 0.03 b |
Wildflower Honey + spirulina | 0.99 ± 0.02 a | 295.70 ± 46.89 a | 281.47 ± 36.18 a | 0.75 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiti, C.; Costantini, L.; Comparini, D.; Merendino, N.; Garzoli, S. Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina (Arthrospira platensis). Molecules 2024, 29, 4373. https://doi.org/10.3390/molecules29184373
Taiti C, Costantini L, Comparini D, Merendino N, Garzoli S. Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina (Arthrospira platensis). Molecules. 2024; 29(18):4373. https://doi.org/10.3390/molecules29184373
Chicago/Turabian StyleTaiti, Cosimo, Lara Costantini, Diego Comparini, Nicolò Merendino, and Stefania Garzoli. 2024. "Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina (Arthrospira platensis)" Molecules 29, no. 18: 4373. https://doi.org/10.3390/molecules29184373
APA StyleTaiti, C., Costantini, L., Comparini, D., Merendino, N., & Garzoli, S. (2024). Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina (Arthrospira platensis). Molecules, 29(18), 4373. https://doi.org/10.3390/molecules29184373