Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Background in the Microchamber
2.2. Recoveries for Typical SVOCs in the Microchamber Method
2.2.1. Comparison of SVOC Recoveries at Different Thermal Desorption Temperatures
2.2.2. Comparison of SVOC Recoveries in Different Microchambers
2.3. Quality Assurance and Quality Control
2.3.1. Establishment of SVOC Test Calibration Curves
2.3.2. Method Limits of Detections
2.3.3. Method Precision and Sample Recovery
2.4. Application of the Microchamber Method
2.4.1. SVOC Emissions from Each Architectural Coating
2.4.2. SVOC Emissions from Each PVC Flooring
3. Materials and Methods
3.1. Test Pieces
3.2. Emission Chamber
3.3. Emission and Gas Sampling
3.4. Analysis Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Mo, J.; Weschler, C.J. Reducing Health Risks from Indoor Exposures in Rapidly Developing Urban China. Environ. Health Persp. 2013, 121, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, X.; Wang, L.; Liang, K.; Zhang, Y.; Cao, J. Early-Stage Emissions of Formaldehyde and Volatile Organic Compounds from Building Materials: Model Development, Evaluation, and Applications. Environ. Sci. Technol. 2022, 56, 14680–14689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.X.; Pei, Y.P.; Zhao, P.; Wu, C.D.; Qu, C.; Li, W.F.; Zhao, Y.J.; Liu, J.M. Characterizing Key Volatile Pollutants Emitted from Adhesives by Chemical Compositions, Odor Contributions and Health Risks. Molecules 2022, 27, 1125. [Google Scholar] [CrossRef] [PubMed]
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences—Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. [Google Scholar] [CrossRef] [PubMed]
- Gallon, V.; Le Cann, P.; Sanchez, M.; Dematteo, C.; Le Bot, B. Emissions of VOCs, SVOCs, and mold during the construction process: Contribution to indoor air quality and future occupants’ exposure. Indoor Air 2020, 30, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhao, Z.; Shen, J. Effects of the Manufacturing Conditions on the VOCs Emissions of Particleboard. Bioresources 2020, 15, 1074–1084. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, M.; Zhang, Q.; Wu, X.; Zhao, H.; Xie, Q.; Chen, J. Organophosphorus Flame Retardants and Plasticizers in Building and Decoration Materials and Their Potential Burdens in Newly Decorated Houses in China. Environ. Sci. Technol. 2017, 51, 10991–10999. [Google Scholar] [CrossRef]
- Lu, C.-L.; Wen, H.-J.; Chen, M.-L.; Sun, C.-W.; Hsieh, C.-J.; Wu, M.-T.; Wang, S.-L.; TMICS study group. Prenatal phthalate exposure and sex steroid hormones in newborns: Taiwan Maternal and Infant Cohort Study. PLoS ONE 2024, 19, e0297631. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hirata-Koizumi, M.; Ema, M. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul. Toxicol. Pharm. 2008, 50, 37–49. [Google Scholar] [CrossRef]
- Courtier, A.; Roig, B.; Cariou, S.; Cadiere, A.; Bayle, S. Evaluation of Coriolis Micro Air Sampling to Detect Volatile and Semi-Volatile Organic Compounds. Molecules 2022, 27, 6462. [Google Scholar] [CrossRef] [PubMed]
- Rudel, R.A.; Perovich, L.J. Endocrine disrupting chemicals in indoor and outdoor air. Atmos. Environ. 2009, 43, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. Exposure Factor Handbook of Chinese Population (Adults); China Environmental Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Suzuki, N.; Nakaoka, H.; Nakayama, Y.; Tsumura, K.; Takaguchi, K.; Takaya, K.; Eguchi, A.; Hanazato, M.; Todaka, E.; Mori, C. Association between sum of volatile organic compounds and occurrence of building-related symptoms in humans: A study in real full-scale laboratory houses. Sci. Total Environ. 2021, 750, 141635. [Google Scholar] [CrossRef]
- Hall, E.C.; Haines, S.R.; Marciniak, K.; Goldstein, A.H.; Adams, R.I.; Dannemiller, K.C.; Misztal, P.K. Varying humidity increases emission of volatile nitrogen-containing compounds from building materials. Build. Environ. 2021, 205, 108290. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef] [PubMed]
- Mercier, F.; Glorennec, P.; Thomas, O.; Le Bot, B. Organic Contamination of Settled House Dust, A Review for Exposure Assessment Purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [Google Scholar] [CrossRef]
- Rauert, C.; Lazarov, B.; Harrad, S.; Covaci, A.; Stranger, M. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos. Environ. 2014, 82, 44–55. [Google Scholar] [CrossRef]
- Kemmlein, S.; Hahn, O.; Jann, O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003, 37, 5485–5493. [Google Scholar] [CrossRef]
- Bakó-Biró, Z.; Wargocki, P.; Weschler, C.J.; Fanger, P.O. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 2004, 14, 178–187. [Google Scholar] [CrossRef]
- Liu, X.; Allen, M.R.; Roache, N.F. Characterization of organophosphorus flame retardants’ sorption on building materials and consumer products. Atmos. Environ. 2016, 140, 333–341. [Google Scholar] [CrossRef]
- Xue, J.; Cai, H.; Li, W.; Pei, Y.; Guan, H.; Guo, Z.; Wu, C.; Qu, C.; Li, W.; Liu, J. Emissions of VOCs and SVOCs from polyvinyl chloride building materials: Contribution to indoor odor and inhalation health risks. Build. Environ. 2023, 229, 109958. [Google Scholar] [CrossRef]
- Tao, F.; Tan, Y.; Lu, Q.; Zhang, J.; Liu, Y.; Shen, Z.; Ma, Y. A natural environmental chamber study on the emissions and fate of organophosphate esters in the indoor environment. Sci. Total Environ. 2022, 827, 154280. [Google Scholar] [CrossRef]
- Han, X.; Li, W.; Zhao, Y.; Zhuang, Y.; Jia, Q.; Guan, H.; Liu, J.; Wu, C. Organophosphate Esters in Building Materials from China: Levels, Sources, Emissions, and Preliminary Assessment of Human Exposure. Environ. Sci. Technol. 2024, 58, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dang, X.; Shan, Z. Thermal Analysis and Identification of Potential Fire-proof Energy Building Material Based on Artificial Leather. J. Therm. Sci. 2019, 28, 88–96. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Li, F.; Liu, H.; Yang, J. Stocks and flows of polyvinyl chloride (PVC) in China: 1980-2050. Resour. Conserv. Recycl. 2020, 154, 104584. [Google Scholar] [CrossRef]
- Zhen, G.; Mu, Y.; Yuan, P.; Li, Y.; Li, X. One-Step Synthesis of Self-Stratification Core-Shell Latex for Antimicrobial Coating. Molecules 2023, 28, 2795. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, I.; Jung, Y.; Lee, J.; Min, S.; Yoon, C. Phthalate Levels in Nursery Schools and Related Factors. Environ. Sci. Technol. 2013, 47, 12459–12468. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar] [CrossRef]
- Zharkenova, G.; Arkan, E.; Arkan, M.Z.; Feder-Kubis, J.; Koperski, J.; Mussabayev, T.; Chorazewski, M. From Biological Source to Energy Harvesting Device: Surface Protective Ionic Liquid Coatings for Electrical Performance Enhancement of Wood-Based Electronics. Molecules 2023, 28, 6758. [Google Scholar] [CrossRef] [PubMed]
- Filley, C.M. Toluene Abuse and White Matter A Model of Toxic Leukoencephalopathy. Psychiatr. Clin. N. Am. 2013, 36, 293–302. [Google Scholar] [CrossRef]
- Cavalca, L.; Di Gennaro, P.; Colombo, M.; Andreoni, V.; Bernasconi, S.; Ronco, I.; Bestetti, G. Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Res. Microbiol. 2000, 151, 877–887. [Google Scholar] [CrossRef]
- Skrbic, B.D.; Kadokami, K.; Antic, I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. Environ. Res. 2018, 166, 130–140. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Pejcic, B.; Myers, M.; Qi, X.B. Development of a plasticizer-poly(methyl methacrylate) membrane for sensing petroleum hydrocarbons in water. Sens. Actuators B Chem. 2014, 193, 70–77. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Tanabe, S.-I. The contamination of DEHP on the surfaces of PVC sheet and risk of infants. J. Asian Archit. Build. Eng. 2023, 22, 317–326. [Google Scholar] [CrossRef]
- Kim, H.-t.; Tanabe, S.-i. Measuring Degree of Contamination by Semi-volatile Organic Compounds (SVOC) in Interiors of Korean Homes and Kindergartens. J. Asian Archit. Build. Eng. 2017, 16, 661–668. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Little, J.C.; Zhang, Y. A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor Air 2017, 27, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Z.; Gong, M.; Xu, Y.; Zhang, Y. Non-dietary exposure to phthalates for pre-school children in kindergarten in Beijing, China. Build. Environ 2020, 167, 106438. [Google Scholar] [CrossRef]
- GB/T 42898-2023; Determination of the Emission of Semivolatile Organic Compounds (SVOC) for Building Products (in Chinese). Standardization Administration of China: Beijing, China, 2023.
- Schossler, P.; Schripp, T.; Salthammer, T.; Bahadir, M. Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers. Sci. Total Environ. 2011, 409, 4031–4038. [Google Scholar] [CrossRef]
- Tanaka, N.; Munaka, T. Influence of Human Behavior on Indoor Air Quality in a Care Facility for the Elderly in Japan. Asian J. Atmos. Environ. 2021, 15, 2021089. [Google Scholar] [CrossRef]
- Moura, P.C.; Vassilenko, V. Long-term in situ air quality assessment in closed environments: A gas chromatography–ion mobility spectrometry applicability study. Eur. J. Mass. Spectrom. 2023, 29, 231–239. [Google Scholar] [CrossRef]
- Richardot, W.H.; Hamzai, L.; Ghukasyan, T.; Dodder, N.G.; Quintana, P.J.E.; Matt, G.E.; Sant, K.E.; Lopez-Galvez, N.; Hoh, E. Novel chemical contaminants associated with thirdhand smoke in settled house dust. Chemosphere 2024, 352, 141138. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.J.; Dobbin, N.A.; Héroux, M.E.; Fisher, M.; Sun, L.; Khoury, C.F.; Hauser, R.; Walker, M.; Ramsay, T.; Bienvenu, J.F.; et al. Urinary and breast milk biomarkers to assess exposure to naphthalene in pregnant women: An investigation of personal and indoor air sources. Environ. Health 2014, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Research about the pollution of benzene, methylbenzene, dimethylbenzene and methylaldehyde in the indoor decorated air. Environ. Monit. China 2004, 20, 23–24. [Google Scholar]
- Masih, J.; Masih, A.; Kulshrestha, A.; Singhvi, R.; Taneja, A. Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J. Hazard. Mater. 2010, 177, 190–198. [Google Scholar] [CrossRef] [PubMed]
- ISO-16000−25:2011; Indoor Air−Part 25: Determination of the Emission of Semi-Volatile Organic Compounds by Building Products−MicroChamber Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/44892.html (accessed on 1 September 2011).
Abbreviation | Name | CAS# | Application |
---|---|---|---|
D6 | Dodecamethylcyclohexasiloxane | 540-97-6 | softening agent |
BHT | Butylated hydroxytoluene | 128-37-0 | antioxidant |
TCEP | Tris(2-chloroethyl) phosphate | 115-96-8 | flame retardant |
DBP | Dibutyl phthalate | 84-74-2 | plasticizer |
DOA | Bis(2-ethylhexyl) adipate | 103-23-1 | plasticizer |
DEHP | Dioctyl Phthalate | 117-81-7 | plasticizer |
BBP | Butyl Benzyl Phthalate | 85-68-7 | plasticizer |
Analytes | Calibration Curves | R2 |
---|---|---|
D6 | y = 510249x + 22982 | 0.9999 |
BHT | y = 2966456x − 183151 | 0.9991 |
TCEP | y = 897991x − 57186 | 0.9983 |
DBP | y = 6448849x − 255305 | 0.9998 |
BBP | y = 2597967x − 58986 | 0.9998 |
DOA | y = 2860857x − 44271 | 0.9996 |
DEHP | y = 3746605x − 75712 | 0.9997 |
Analytes | Mass of Emission (μg) | SD (%) | MDLs (μg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Mean | |||
D6 | 0.023 | 0.026 | 0.029 | 0.027 | 0.026 | 0.022 | 0.026 | 0.026 | 0.002 | 0.006 |
BHT | 0.013 | 0.016 | 0.015 | 0.020 | 0.016 | 0.016 | 0.016 | 0.015 | 0.001 | 0.004 |
TCEP | 0.018 | 0.019 | 0.018 | 0.024 | 0.018 | 0.021 | 0.020 | 0.019 | 0.001 | 0.003 |
DBP | 0.025 | 0.024 | 0.022 | 0.022 | 0.024 | 0.028 | 0.023 | 0.024 | 0.002 | 0.005 |
BBP | 0.023 | 0.023 | 0.021 | 0.025 | 0.023 | 0.025 | 0.024 | 0.023 | 0.001 | 0.004 |
DOA | 0.024 | 0.026 | 0.022 | 0.025 | 0.027 | 0.027 | 0.025 | 0.025 | 0.002 | 0.005 |
DEHP | 0.021 | 0.027 | 0.018 | 0.025 | 0.027 | 0.025 | 0.028 | 0.024 | 0.004 | 0.011 |
Analytes | Mass of Emission (μg) | RSD (%) | Recoveries (%) | |||||
---|---|---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | |||
D6 | 0.748 | 0.580 | 0.616 | 0.565 | 0.546 | 0.520 | 13.7 | 119 |
BHT | 0.533 | 0.511 | 0.494 | 0.481 | 0.484 | 0.486 | 4.03 | 99.6 |
TCEP | 0.535 | 0.474 | 0.438 | 0.401 | 0.418 | 0.451 | 10.6 | 90.6 |
DBP | 0.573 | 0.503 | 0.475 | 0.463 | 0.468 | 0.505 | 8.17 | 99.6 |
BBP | 0.583 | 0.512 | 0.481 | 0.480 | 0.488 | 0.527 | 7.72 | 102 |
DOA | 0.587 | 0.531 | 0.502 | 0.497 | 0.502 | 0.543 | 6.55 | 105 |
DEHP | 0.573 | 0.512 | 0.481 | 0.480 | 0.484 | 0.522 | 7.10 | 102 |
Before the Optimization | After the Optimization | Reason |
---|---|---|
Sample clamped between hatch cover and hatch body. | Samples are stored on hold or on a sample rack. | Solid flaky samples should be cut into round flaky samples before optimization. After optimization, it is suitable for testing thicker and deformed samples. |
The air intake was located on the lower side of the chamber. | The air intake was located on the cover of the chamber. | To reduce the SVOC deposition in the chamber. |
The bottom of the chamber was flat. | The bottom of the chamber was streamlined. | To reduce the SVOC deposition in the chamber. |
No cooling device. | The electronic cooling unit was added for gas sampling at low temperatures. | To improve the capture efficiency of the SVOC. |
First Emission Stage | |
---|---|
Gas supply | N2 (0.9 L/h) |
Temperature and humidity | 23 ± 0.5 °C and 50 ± 5% RH |
Sampling rate | 21.6 L (15 mL/min × 24 h) |
Scavenger | Tenax TA |
Second Thermal Desorption Stage | |
Gas supply | N2 (5.4 L/h) |
Temperature of the thermal desorption system | 23 °C → 15 °C/min → 250 °C |
Sampling rate | 3.6 L (90 mL/min × 40 min) |
Scavenger | Tenax TA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Jia, Q.; Guo, Z.; Han, X.; Zhang, H.; Hao, L.; Wu, C.; Liu, J. Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules 2024, 29, 4445. https://doi.org/10.3390/molecules29184445
Guan H, Jia Q, Guo Z, Han X, Zhang H, Hao L, Wu C, Liu J. Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules. 2024; 29(18):4445. https://doi.org/10.3390/molecules29184445
Chicago/Turabian StyleGuan, Hongyan, Qi Jia, Zhongbao Guo, Xu Han, Huiyu Zhang, Liteng Hao, Chuandong Wu, and Jiemin Liu. 2024. "Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method" Molecules 29, no. 18: 4445. https://doi.org/10.3390/molecules29184445
APA StyleGuan, H., Jia, Q., Guo, Z., Han, X., Zhang, H., Hao, L., Wu, C., & Liu, J. (2024). Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules, 29(18), 4445. https://doi.org/10.3390/molecules29184445