Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Selection of Derivatization Reagents
2.2. The Selection of Internal Standard
2.3. Optimization of Derivatization Conditions
2.4. The Optimization of Paper-Spray Ionization Mass Spectrometry Parameters
2.5. Linearity and Sensitivity
2.6. The Precision of the Experiment
2.7. The Sample Recovery Experiment
2.8. The Complex Matrix Sample Detection
3. Materials and Methods
3.1. The Instruments
3.2. Materials and Reagents
3.3. Solution Preparation
3.4. Derivative Reaction
3.5. Paper Spray Mass Spectrometry Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldwin, H.E.; Nighland, M.; Kendall, C.; Mays, D.A.; Grossman, R.; Newburger, J. 40 years of topical tretinoin use in review. J. Drugs Dermatol. 2013, 12, 638–642. [Google Scholar] [PubMed]
- Samadi, A.; Sartipi, Z.; Ahmad Nasrollahi, S.; Sheikholeslami, B.; Nassiri Kashani, M.; Rouini, M.R.; Dinarvand, R.; Firooz, A. Efficacy assessments of tretinoin-loaded nano lipid carriers in acne vulgaris: A double blind, split-face randomized clinical study. Arch. Dermatol. Res. 2022, 314, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Sumathy, T.K.; Nayak, C.; Ravichandran, G.; Vaidya, P.P.; Mehta, S.; Mittal, R.; Mane, A.; Charugulla, S.N. Efficacy and safety comparison of combination of 0.04% tretinoin microspheres plus 1% clindamycin versus their monotherapy in patients with acne vulgaris: A phase 3, randomized, double-blind study. J. Dermatolog Treat. 2021, 32, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.D.; Werschler, W.P.; Cook-Bolden, F.E.; Guenin, E. Tolerability of tretinoin lotion 0.05% for moderate to severe acne vulgaris: A post hoc analysis in a black population. Cutis 2020, 106, 45–50.e41. [Google Scholar] [CrossRef]
- Han, G.; Armstrong, A.W.; Desai, S.R.; Guenin, E. Novel Tretinoin 0.05% Lotion for the Once-Daily Treatment of Moderate-to-Severe Acne Vulgaris in an Asian Population. J. Drugs Dermatol. 2019, 18, 910–916. [Google Scholar] [CrossRef]
- Bubna, A. Comparison of the clinical efficacy of topical tretinoin(0.05%) cream and tacrolimus(0.1%) ointment using iontophoresis in the management of palmar/plantar psoriasis. Clin. Exp. Dermatol. 2024, 49, 599–606. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Zou, B.; Fu, L.; Ren, S.; Zhang, X. Design and Evaluation of Tretinoin Fatty Acid Vesicles for the Topical Treatment of Psoriasis. Molecules 2023, 28, 7868. [Google Scholar] [CrossRef]
- Muller, S.A.; Belcher, R.W.; Esterly, N.B.; Lochner, J.C.; Miller, J.S.; Roenigk, H., Jr.; Weissman, L. Keratinizing dermatoses. Combined data from four centers on short-term topical treatment with tretinoin. Arch. Dermatol. 1977, 113, 1052–1054. [Google Scholar] [CrossRef]
- Eriksen, L.; Cormane, R.H. Oral retinoic acid as therapy for congenital ichthyosiform erythroderma. Br. J. Dermatol. 1975, 92, 343–345. [Google Scholar] [CrossRef]
- Hu, N.; Yi, Q.; Wang, X.; Wang, L. Irritant contact dermatitis, multiple pyogenic granulomas and vitiligo following topical application of tretinoin. Dermatol. Ther. 2020, 33, e13966. [Google Scholar] [CrossRef]
- Piersma, A.H.; Hessel, E.V.; Staal, Y.C. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod. Toxicol. 2017, 72, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Feng, Y.F. Literature Analysis of 48 Cases of Adverse Reactions to Retinoic Acid. Chin. J. Pharmacopidemiol. 2011, 20, 368–370. [Google Scholar]
- Teknetzis, A.; Ioannides, D.; Vakali, G.; Lefaki, I.; Minas, A. Pyogenic granulomas following topical application of tretinoin. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 337–339. [Google Scholar] [CrossRef]
- Technical Specifications for Cosmetic Safety; China Standard Publishing House: Beijing, China, 2016.
- Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products; The European Parliament and of the Council: Strasbourg, France, 2009; pp. 59–209.
- Wu, W.Y.; Li, X.H.; Lei, J.L.; Wang, J.Q.; Duan, Z.M. Quantitative determination of retinoic acid in compound retinoic acid copsules by TLC scanning. Chin. J. Hosp. Pharm. 2001, 21, 411–412. [Google Scholar]
- Gabriëls, M.; Brisaert, M.; Plaizier-Vercammen, J. Densitometric thin layer chromatographic analysis of tretinoin and erythromycin in lotions for topical use in acne treatment. Eur. J. Pharm. Biopharm. 1999, 48, 53–58. [Google Scholar] [CrossRef]
- Barazandeh Tehrani, M.; Namadchian, M.; Fadaye Vatan, S.; Souri, E. Derivative spectrophotometric method for simultaneous determination of clindamycin phosphate and tretinoin in pharmaceutical dosage forms. DARU J. Pharm. Sci. 2013, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A. A validated UV spectrophotometric method for simultaneous estimation of tretinoin and benzoyl peroxide in bulk and semisolid dosage form. Rasayan J. Chem. 2009, 2, 649–654. [Google Scholar]
- Elzanfaly, E.S.; Saad, A.S.; Abd-Elaleem, A.E. Simultaneous determination of retinoic acid and hydroquinone in skin ointment using spectrophotometric technique (ratio difference method). Saudi Pharm. J. 2012, 20, 249–253. [Google Scholar] [CrossRef]
- Fahmy, N.M.; Hesham, K.; Tawakkol, S.M.; AbdelAziz, L.; Abdelrahman, M.H. Three Different Approaches Based on Derivative Ratio Spectra for Spectrophotometric Resolution of a Quaternary Mixture in Semisolid Dosage Form. J. AOAC Int. 2021, 104, 1223–1231. [Google Scholar] [CrossRef]
- Zhang, S.S.; Jia, C.P. Simultaneous determination of ten anti-acne compounds in anti-acne cosmetics by high performance liquid chromatography and verification by liquid chromatography-tandem mass. China Surfactant Deterg. Cosmet. 2022, 52, 1140–1146. [Google Scholar]
- Yan, X.M.; Tan, M.J.; He, B.H. Establishment of a Method for Liquid Chromatographic Analysis for Determination of Tretinoin Illegally Added in Acne-removing Cosmetics. Chin. Pharm. Aff. 2014, 28, 580–583. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Zhang, F.C. Determination of three components in compound acne gel for chronic pharyngitis by HPLC. Anhui J. Med. Pharm. 2012, 16, 920–921. [Google Scholar]
- Xu, W.J.; Liang, Y.; Fu, C.Y.; Chen, G.B. Simultaneous determination of inhibitive components in anti-acne cosmetics by reversed-phase high performance liquid chromatography. J. Environ. Health 2020, 37, 175–177. [Google Scholar] [CrossRef]
- Bempong, D.K.; Honigberg, I.L.; Meltzer, N.M. Normal phase LC-MS determination of retinoic acid degradation products. J. Pharm. Biomed. Anal. 1995, 13, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.G.; Zheng, J.; Li, S.; Bai, Y.L.; Feng, Y.Q. Triple chemical derivatization strategy assisted liquid chromatography-mass spectrometry for determination of retinoic acids in human serum. Talanta 2022, 245, 123474. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, W.Y.; Prins, G.S.; van Breemen, R.B. Simultaneous determination of all-trans, 9-cis, 13-cis retinoic acid and retinol in rat prostate using liquid chromatography-mass spectrometry. J. Mass Spectrom. 2001, 36, 882–888. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.; Zhou, K.; Cheng, F.; Chen, Y. Determination of isotretinoin in human plasma by high performance liquid chromatography-electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2011, 56, 324–329. [Google Scholar] [CrossRef]
- Desmedt, B.; Van Hoeck, E.; Rogiers, V.; Courselle, P.; De Beer, J.O.; De Paepe, K.; Deconinck, E. Characterization of suspected illegal skin whitening cosmetics. J. Pharm. Biomed. Anal. 2014, 90, 85–91. [Google Scholar] [CrossRef]
- Leontyev, D.; Olivos, H.; Shrestha, B.; Datta Roy, P.M.; LaPlaca, M.C.; Fernández, F.M. Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging for Traumatic Brain Injury Spatial Metabolomics. Anal. Chem. 2024, 96, 13598–13606. [Google Scholar] [CrossRef]
- Venter, A.R. Protein analysis by desorption electrospray ionization mass spectrometry. Mass Spectrom. Rev. 2024. early view. [Google Scholar] [CrossRef]
- Batista Junior, A.C.; Bernardo, R.A.; Rocha, Y.A.; Vaz, B.G.; Chalom, M.Y.; Jardim, A.C.; Chaves, A.R. An Agile and Accurate Approach for N-Nitrosamines Detection and Quantification in Medicines by DART-MS. J. Am. Soc. Mass Spectrom. 2024, 35, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Wang, J.; Ji, J. Rapid detection of 10 benzodiazepines and metabolites in blood and urine using DART-MS/MS. Drug Test. Anal. 2023, 16, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Engelhard, C.; Wiley, J.S.; Shoulds, A.U.; Cooks, R.G.; Hieftje, G.M.; Shelley, J.T. Characterization of a Low-Temperature Plasma (LTP) Ambient Ionization Source Using Temporally Resolved Monochromatic Imaging Spectrometry. Appl. Spectrosc. 2023, 77, 940–956. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Garikapati, V.; Spengler, B.; Heiles, S. Analysis of ketone-based neurosteroids by reactive low-temperature plasma mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.S.; Damon, D.E.; Badu-Tawiah, A.K. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. Mass Spectrom. Rev. 2020, 39, 336–370. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.; Zhang, W.; Ouyang, Z. Paper spray ionization mass spectrometry: Recent advances and clinical applications. Expert Rev. Proteom. 2018, 15, 781–789. [Google Scholar] [CrossRef]
- Espy, R.D.; Muliadi, A.R.; Ouyang, Z.; Cooks, R.G. Spray mechanism in paper spray ionization. Int. J. Mass Spectrom. 2012, 325–327, 167–171. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Manicke, N.E.; Lin, J.M.; Cooks, R.G.; Ouyang, Z. Development, characterization, and application of paper spray ionization. Anal. Chem. 2010, 82, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Jia, S.; Hu, W.; Cui, M.; Hou, J.; Wang, R.; Zhang, M. Rapid quality evaluation of Chinese herbal medicines using a miniature mass spectrometer: Lygodium japonicum (Thunb.) Sw. as an example. Anal. Methods 2023, 15, 430–435. [Google Scholar] [CrossRef]
- Bartella, L.; Di Donna, L.; Napoli, A.; Sindona, G.; Mazzotti, F. Paper spray tandem mass spectrometry: A rapid approach for the assay of parabens in cosmetics and drugs. J. Mass Spectrom. 2020, 55, e4526. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Z.; Huang, S.; Fang, Z.; Chen, B.; Ma, M. Rapid quantitative analysis of ginkgo flavonoids using paper spray mass spectrometry. J. Pharm. Biomed. Anal. 2019, 171, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Skaggs, C.L.; Ren, G.J.; Elgierari, E.T.M.; Sturmer, L.R.; Shi, R.Z.; Manicke, N.E.; Kirkpatrick, L.M. Simultaneous quantitation of five triazole anti-fungal agents by paper spray-mass spectrometry. Clin. Chem. Lab. Med. 2020, 58, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.M.; Scheel, G.L.; Augusti, R.; Tarley, C.R.T.; Nascentes, C.C. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal. Chim. Acta 2020, 1106, 52–60. [Google Scholar] [CrossRef]
- Görgens, C.; Walker, K.; Boeser, C.; Wijeratne, N.; Martins, C.; Guddat, S.; Thevis, M. Paper spray mass spectrometry—A potential complementary technique for the detection of polar compounds in sports drug testing. Drug Test. Anal. 2020, 12, 1658–1665. [Google Scholar] [CrossRef]
- Medeiros, T.C.T.; Dabija, L.G.; Parasecolo, L.; Melo, I.S.; Moraes, L.A.B.; Ifa, D.R. Differentiation of the metabolic profile of actinobacteria isolated from the soil of the caatinga biome by paper spray mass spectrometry. J. Mass Spectrom. 2023, 58, e4956. [Google Scholar] [CrossRef]
- Jjunju, F.P.M.; Damon, D.E.; Romero-Perez, D.; Young, I.S.; Ward, R.J.; Marshall, A.; Maher, S.; Badu-Tawiah, A.K. Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Sci. Rep. 2020, 10, 10698. [Google Scholar] [CrossRef]
- Coopersmith, K.; Cody, R.B.; Mannion, J.M.; Hewitt, J.T.; Koby, S.B.; Wellons, M.S. Rapid paper spray mass spectrometry characterization of uranium and exemplar molecular species. Rapid Commun. Mass Spectrom. 2019, 33, 1695–1702. [Google Scholar] [CrossRef]
- Teunissen, S.F.; Fedick, P.W.; Berendsen, B.J.A.; Nielen, M.W.F.; Eberlin, M.N.; Graham Cooks, R.; van Asten, A.C. Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood. J. Am. Soc. Mass Spectrom. 2017, 28, 2665–2676. [Google Scholar] [CrossRef] [PubMed]
- Fedick, P.W.; Bills, B.J.; Manicke, N.E.; Cooks, R.G. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry. Anal. Chem. 2017, 89, 10973–10979. [Google Scholar] [CrossRef]
- da Silva Ferreira, P.; Fernandes de Abreu e Silva, D.; Augusti, R.; Piccin, E. Forensic analysis of ballpoint pen inks using paper spray mass spectrometry. Analyst 2015, 140, 811–819. [Google Scholar] [CrossRef]
- Mazzotti, F.; Bartella, L.; Talarico, I.R.; Napoli, A.; Di Donna, L. High-throughput determination of flavanone-O-glycosides in citrus beverages by paper spray tandem mass spectrometry. Food Chem. 2021, 360, 130060. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Li, Y.C.; Sheu, F.; Lin, C.H. Rapid screening and determination of pesticides on lemon surfaces using the paper-spray mass spectrometry integrated via thermal desorption probe. Food Chem. 2021, 363, 130305. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, J.A.R.; Pereira, H.V.; Sena, M.M.; Piccin, E.; Zacca, J.J.; Augusti, R. Paper spray mass spectrometry and chemometric tools for a fast and reliable identification of counterfeit blended Scottish whiskies. Food Chem. 2017, 237, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, Y.J.; Zhang, J.; Sun, T.Q.; Guo, Y.L. Derivatization Strategy for Simultaneous Molecular Imaging of Phospholipids and Low-Abundance Free Fatty Acids in Thyroid Cancer Tissue Sections. Anal. Chem. 2019, 91, 4070–4076. [Google Scholar] [CrossRef]
Chemical Compound | Added (µg·mL−1) | Found (µg·mL−1) | Recovery Rate (%) | Average Recovery Rates (%) | RSD% (N = 3) |
---|---|---|---|---|---|
0.00525 | 104.94 | ||||
Retinoic acid | 0.005 | 0.00524 | 104.78 | 102.40 | 4.15 |
0.00487 | 97.49 | ||||
0.0493 | 98.54 | ||||
0.05 | 0.0491 | 98.26 | 100.79 | 4.11 | |
0.0528 | 105.57 | ||||
0.497 | 99.47 | ||||
0.5 | 0.486 | 97.20 | 99.85 | 2.86 | |
0.514 | 102.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Guo, N.; Hu, X.; Di, B.; Liu, Y.; Sun, H. Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics. Molecules 2024, 29, 4491. https://doi.org/10.3390/molecules29184491
Bao Y, Guo N, Hu X, Di B, Liu Y, Sun H. Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics. Molecules. 2024; 29(18):4491. https://doi.org/10.3390/molecules29184491
Chicago/Turabian StyleBao, Yuzhang, Ningzi Guo, Xiaowen Hu, Bin Di, Yang Liu, and Huimin Sun. 2024. "Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics" Molecules 29, no. 18: 4491. https://doi.org/10.3390/molecules29184491
APA StyleBao, Y., Guo, N., Hu, X., Di, B., Liu, Y., & Sun, H. (2024). Chemical Derivatization and Paper Spray Ionization Mass Spectrometry for Fast Screening of Retinoic Acid in Cosmetics. Molecules, 29(18), 4491. https://doi.org/10.3390/molecules29184491