Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Spectra and CPE Optimization
- (1)
- (2)
- Topping up to 3.00 g with a mixture of water and alcohol (ethanol or methanol).
2.2. Stoichiometry and Suggested Structures
2.3. Comparison of Theoretical and Experimental Spectra
2.4. Energy Analysis of the Dimeric Structures
2.5. Extraction Constant and Fraction Extracted
2.6. Calibration Curve and Analytical Characteristics
2.7. Impact of Foreign Ions
2.8. Analytical Application
2.9. Comparison with Existing Methods
Reagent(s) | Technique | Surfactant | Acidity | λ, nm | Linear Range, ng mL−1 | Sample | Ref. |
---|---|---|---|---|---|---|---|
PAN | CPE–UV/Vis | PONPE-7.5 | pH 10.0 | 555 | 2–60 | Tap water | [18] |
PAN | CPE–UV/Vis, PLSR | TX-114 | pH 9.2 | 550 | 2–150 | Water and urine samples | [33] |
TiO2 NPs + dithizone | CPE–SPE–UV/Vis | TX-100 | pH 7.0 | 530 | 0.5–90 | Tap water, powder milk, and zinc sulfate tablet | [34] |
PANN | CPE–UV/Vis | TX-100 | 1 mol L−1 HCl | 414 | 100–3000 | Vegetables, meet, and water samples | [35] |
Na2EDTA + BG | CPE–UV/Vis | TX-100 | pH 10.0 | 630 | 100–10,000 | Food samples | [38] |
HTAR | CL-CPE–UV/Vis | TX-114 | pH 9.4 | 554 | 15.7–209 | Pharmaceutical and industrial samples | This work |
3. Materials and Methods
3.1. Instrumentation and Chemicals
3.2. Samples and Sample Preparation
3.3. CPE–Spectrophotometric Optimization
3.4. Determination of the Fraction Extracted
3.5. Recommended Procedure for the Determination of Zinc(II)
3.6. Theoretical Section
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IUPAC Gold Book. Transition Element. Available online: https://goldbook.iupac.org/terms/view/T06456 (accessed on 3 September 2024).
- Abkhoshk, E.; Jorjani, E.; Al-Harahsheh, M.S.; Rashchi, F.; Naazeri, M. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 2014, 149, 153–167. [Google Scholar] [CrossRef]
- IMA Database of Mineral Properties. Available online: https://rruff.info/ima/ (accessed on 3 September 2024).
- Chatterjee, K.K. Uses of Metals and Metallic Minerals; New Age International (P) Ltd.: New Delhi, India, 2007; pp. 276–285. [Google Scholar]
- Prasad, A.S. Impact of the Discovery of Human Zinc Deficiency on Health. J. Am. Coll. Nutr. 2009, 28, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet. 2020, 33, 624–643. [Google Scholar] [CrossRef] [PubMed]
- Zinc Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554548/ (accessed on 3 September 2024).
- Yousefi, S.; Makarem, S.; Alahmad, W.; Zare, F.D.; Tabani, H. Evaluation of complexing agents in the gel electro-membrane extraction: An efficient approach for the quantification of zinc (II) ions in water samples. Talanta 2022, 238, 123031. [Google Scholar] [CrossRef] [PubMed]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Maywald, M.; Rink, L. Zinc in Human Health and Infectious Diseases. Biomolecules 2022, 12, 1748. [Google Scholar] [CrossRef]
- Stiles, L.I.; Ferrao, K.; Mehta, K.J. Role of zinc in health and disease. Clin. Exp. Med. 2024, 24, 38. [Google Scholar] [CrossRef]
- Miura, J.; Ishii, H.; Watanabe, H. Extraction and separation of nickel chelate of 1-(2-thiazolylazo)-2-naphthol in nonionic surfactant solution. Bunseki Kagaku 1976, 25, 808–809. [Google Scholar] [CrossRef]
- Snigur, D.; Azooz, E.A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent innovations in cloud point extraction towards a more efficient and environmentally friendly procedure. TrAC Trends Anal. Chem. 2023, 164, 117113. [Google Scholar] [CrossRef]
- Halko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction. J. Chromatogr. A 2023, 1701, 464053. [Google Scholar] [CrossRef]
- Melnyk, A.; Namieśnik, J.; Wolska, L. Theory and recent applications of coacervate-based extraction techniques. TrAC Trends Anal. Chem. 2015, 71, 282–292. [Google Scholar] [CrossRef]
- Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-forming organic ligands in cloud-point extraction of metal ions: A review. Talanta 2013, 110, 202–228. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Sakai, Y. Spectrophotometric determination of zinc with 1-(2-pyridylazo)-2-naphthol and surfactant. Bunseki Kagaku 1974, 23, 396–402. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanaka, H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 1978, 25, 585–589. [Google Scholar] [CrossRef]
- Kulichenko, S.A.; Doroshchuk, V.A. Atomic-absorption determination of zinc in water with micellar-extraction preconcentration with phases of nonionic surfactants. J. Anal. Chem. 2003, 58, 524–527. [Google Scholar] [CrossRef]
- Giokas, D.L.; Eksperiandova, L.P.; Blank, A.B.; Karayannis, M.I. Comparison and evaluation of cloud point extraction and low-temperature directed crystallization as preconcentration tools for the determination of trace elements in environmental samples. Anal. Chim. Acta 2004, 505, 51–58. [Google Scholar] [CrossRef]
- Ferreira, H.S.; Santos, A.C.N.; Portugal, L.A.; Costa, A.C.S.; Miró, M.; Ferreira, S.L.C. Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry. Talanta 2008, 77, 73–76. [Google Scholar] [CrossRef]
- Shokrollahi, A.; Shamsipur, M.; Jalali, F.; Nomani, H. Cloud point extraction-preconcentration and flame atomic absorption spectrometric determination of low levels of zinc in water and blood serum samples. Cent. Eur. J. Chem. 2009, 7, 938–944. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shokrollahi, A.; Niknam, K.; Niknam, E.; Derki, S.; Soylak, M. A cloud point extraction procedure for preconcentration/flame atomic absorption spectrometric determination of silver, zinc, and lead at subtrace levels in environmental samples. J. AOAC Int. 2009, 92, 907–913. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shokrollahi, A.; Niknam, K.; Soylak, M. Cloud point extraction of copper, zinc, iron and nickel in biological and environmental samples by flame atomic absorption spectrometry. Sep. Sci. Technol. 2009, 44, 773–786. [Google Scholar] [CrossRef]
- Kandhro, G.A.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Shah, A.Q.; Sheikh, H.R.; Kolachi, N.F.; Wadhwa, S.K. Zinc and iron determination in serum and urine samples of thyroid patients using cloud point extraction. J. AOAC Int. 2010, 93, 1589–1594. [Google Scholar] [PubMed]
- Kolachi, N.F.; Kazi, T.G.; Khan, S.; Wadhwa, S.K.; Baig, J.A.; Afridi, H.I.; Shah, A.Q.; Shah, F. Multivariate optimization of cloud point extraction procedure for zinc determination in aqueous extracts of medicinal plants by flame atomic absorption spectrometry. Food Chem. Toxicol. 2011, 49, 2548–2556. [Google Scholar] [CrossRef]
- Han, H.; Zhou, J.; Xu, Y.; Jia, C.; Xia, H.; Wang, Y. Determination of water-soluble and acid-soluble zinc in soils by flame atomic absorption spectrometry after cloud point extraction. Commun. Soil Sci. Plant Anal. 2012, 43, 2389–2399. [Google Scholar] [CrossRef]
- Gürkan, R.; Altunay, N. A reliable determination of zinc levels in beverages with and without alcohol by flame atomic absorption spectrometry after cloud point extraction. Anal. Methods 2013, 5, 1755–1763. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Bulutlu, C.; Gürkan, R. Application of simple, fast and eco-friendly ultrasound-assisted-cloud point extraction for pre-concentration of zinc, nickel and cobalt from foods and vegetables prior to their flame atomic absorption spectrometric determinations. Int. J. Environ. Anal. Chem. 2018, 98, 655–675. [Google Scholar] [CrossRef]
- Silva, E.L.; Roldan, P.d.S.; Giné, M.F. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. J. Hazard. Mat. 2009, 171, 1133–1138. [Google Scholar] [CrossRef]
- Silva, F.L.F.; Matos, W.O.; Lopes, G.S. Determination of cadmium, cobalt, copper, lead, nickel and zinc contents in saline produced water from the petroleum industry by ICP OES after cloud point extraction. Anal. Methods 2015, 7, 9844–9849. [Google Scholar] [CrossRef]
- Bavili Tabrizi, A. Cloud point extraction and spectrofluorimetric determination of aluminium and zinc in foodstuffs and water samples. Food Chem. 2007, 100, 1698–1703. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahram, M. Cloud point extraction simultaneous spectrophotometric determination of Zn(II), Co(II) and Ni(II) in water and urine samples by 1-(2-pyridylazo)2-naphthol using partial least squares regression. Microchim. Acta 2006, 155, 403–408. [Google Scholar] [CrossRef]
- Pourreza, N.; Naghdi, T. Combined cloud point-solid phase extraction by dispersion of TiO2 nanoparticles in micellar media followed by semi-microvolume UV–vis spectrophotometric detection of zinc. Talanta 2014, 128, 164–169. [Google Scholar] [CrossRef]
- Jawad, S.K.; Azooz, E.A. A new approach for separation, extraction and determination of zinc in different samples using cloud-point extraction coupled with spectrophotometry. Fire J. Sci. Technol. 2015, 3, 261–273. [Google Scholar]
- Jaffer, N.D. Cloud-point technique for extraction and spectral estimation of zinc(II) in different samples. Biochem. Cell. Arch. 2019, 19, 4683–4690. [Google Scholar] [CrossRef]
- Wannas, F.A.; Azooz, E.A.; Ridha, R.K.; Jawad, S.K. Separation and micro determination of zinc(II) and cadmium(II) in food samples using cloud point extraction method. Iraqi J. Sci. 2023, 64, 1049–1061. [Google Scholar] [CrossRef]
- Hameed, S.M.; Hussain, S.A.; Abdulzahra, M.A. Determination of zinc and magnesium in food samples via cloud point extraction using brilliant green as a reagent. Methods Objects Chem. Anal. 2024, 19, 111–117. [Google Scholar] [CrossRef]
- Racheva, P.V.; Milcheva, N.P.; Saravanska, A.D.; Gavazov, K.B. Extraction of gallium(III) with a new azo dye in the presence or absence of xylometazoline hydrochloride. Croat. Chem. Acta 2020, 93, 159–165. [Google Scholar] [CrossRef]
- Milcheva, N.P.; Genç, F.; Racheva, P.V.; Delchev, V.B.; Andruch, V.; Gavazov, K.B. An environmentally friendly cloud point extraction–spectrophotometric determination of trace vanadium using a novel reagent. J. Mol. Liq. 2021, 334, 116086. [Google Scholar] [CrossRef]
- Racheva, P.V.; Milcheva, N.P.; Genc, F.; Gavazov, K.B. A centrifuge-less cloud point extraction-spectrophotometric determination of copper(II) using 6-hexyl-4-(2-thiazolylazo)resorcinol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 262, 120106. [Google Scholar] [CrossRef]
- Gavazov, K.B.; Racheva, P.V.; Milcheva, N.P.; Divarova, V.V.; Kiradzhiyska, D.D.; Genç, F.; Saravanska, A.D. Use of a hydrophobic azo dye for the centrifuge-less cloud point extraction–spectrophotometric determination of cobalt. Molecules 2022, 27, 4725. [Google Scholar] [CrossRef]
- Gajdošová, A.; Šandrejová, J. Cloud point extraction technique for a sensitive and green determination of Hg and Cd: A new approach in detection step. In Proceedings of the Novel Trends in Chemistry, Research and Education, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic, 22 November 2023; p. 25. [Google Scholar]
- Stojnova, K.; Yanev, P.; Lekova, V. Study on the equilibria of the complex formation of anionic chelate of Zn(II) with tridentate ligand and the cation of 3-(2-naphtyl)-2,5-diphenyl-2h-tetrazolium chloride. Acta Chim. Slov. 2023, 70, 295–302. [Google Scholar] [CrossRef]
- Shrivas, K.; Dewangan, K.; Ahmed, A. Surfactant-based dispersive liquid–liquid microextraction for the determination of zinc in environmental water samples using flame atomic absorption spectrometry. Anal. Methods 2016, 8, 5519–5525. [Google Scholar] [CrossRef]
- Konermann, L. Addressing a common misconception: Ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
- Stefanova-Bahchevanska, T.; Milcheva, N.; Zaruba, S.; Andruch, V.; Delchev, V.; Simitchiev, K.; Gavazov, K. A green cloud-point extraction-chromogenic system for vanadium determination. J. Mol. Liq. 2017, 248, 135–142. [Google Scholar] [CrossRef]
- Asmus, E. Eine neue Methode zur Ermittlung der Zusammensetzung schwacher Komplexe (A new method for the determination of composition of weak complexes). Fresenius’ J. Anal. Chem. 1960, 178, 104–116. [Google Scholar] [CrossRef]
- Bent, H.E.; French, C.L. The structure of ferric thiocyanate and its dissociation in aqueous solution. J. Am. Chem. Soc. 1941, 63, 568–572. [Google Scholar] [CrossRef]
- Zhiming, Z.; Dongsten, M.; Cunxiao, Y. Mobile equilibrium method for determining composition and stability constant of coordination compounds of the form MmRn. J. Rare Earths 1997, 15, 216–219. [Google Scholar]
- Gavazov, K.B.; Racheva, P.V.; Saravanska, A.D.; Toncheva, G.K.; Delchev, V.B. Extractive spectrophotometric determination and theoretical investigations of two new vanadium(V) complexes. Molecules 2023, 28, 6723. [Google Scholar] [CrossRef]
- Archibald, S.J. 6.8-Zinc. In Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Pergamon: Oxford, UK, 2003; Volume 6, pp. 1147–1251. [Google Scholar]
- Patel, K.; Kumar, A.; Durani, S. Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2007, 1774, 1247–1253. [Google Scholar] [CrossRef]
- Gavazov, K.B.; Delchev, V.B.; Mileva, K.T.; Stefanova, T.S.; Toncheva, G.K. A 2:2:2 complex of vanadium(V) with 4-(2-thiazolylazo)orcinol and 2,3,5-triphenyl-2H-tetrazolium chloride. Acta Chim. Slov. 2016, 63, 392–398. [Google Scholar] [CrossRef]
- Kirova, G.K.; Velkova, Z.Y.; Delchev, V.B.; Gavazov, K.B. Vanadium-Containing Anionic Chelate for Spectrophotometric Determination of Hydroxyzine Hydrochloride in Pharmaceuticals. Molecules 2023, 28, 2484. [Google Scholar] [CrossRef]
- Al-shafie, Z.S.; Alshirifi, A.N. Synthesis and characterization of new azo-dye reagent and using to a spectrophotometric determination of zinc ions in some drug. AIP Conf. Proc. 2022, 2547, 040004. [Google Scholar] [CrossRef]
- Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis; Elsevier: Amsterdam, The Netherlands, 2000; pp. 466–473. [Google Scholar]
- Benamor, M.; Belhamel, K.; Draa, M.T. Use of xylenol orange and cetylpyridinium chloride in rapid spectrophotometric determination of zinc in pharmaceutical products. J. Pharm. Biomed. Anal. 2000, 23, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision D.01. Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- ChemCraft. Available online: http://www.chemcraftprog.com (accessed on 1 September 2024).
Optimized Parameter | Investigated Range | Optimal Value |
---|---|---|
Concentration of HTAR, mol L−1 | (0.12–4) × 10−5 | 2.8 × 10−5 |
pH | 8.0–10.9 | 9.4 |
Volume of the buffer, mL | 0.5–10 | 1.8 |
Mass fraction of TX-114, % | 0.6–2.4 | 1.2 |
Incubation time at 50 °C, min | 5–60 | 30 |
Cooling time at −20 °C, min | 20–70 | 40 |
Wavelength, nm | Visible range | 553 |
Foreign Ion (FI) | Formula of the Salt | Mass of the FI, μg | FI:Zn(II) Mass Ratio | Mass of Zn Found, μg | E, % |
---|---|---|---|---|---|
Al(III) | Al(NO3)3·9H2O | 39 | 10 | 4.1 | 106 |
Ba(II) | Ba(NO3)2 | 3900 | 1000 * | 4.0 | 101 |
Ca(II) | Ca(NO3)2 | 1950 | 500 | 4.1 | 106 |
Cd(II) | CdCl2 | 2.0 | 0.5 | 7.2 | 127 |
Co(II) | Co(SO4)2·7H2O | 2.0 | 0.5 | 5.9 | 151 |
Cr(III) | Cr2(SO4)3 | 3.9 | 1 | 3.9 | 99.2 |
Cr(VI) | K2CrO4 | 19.5 | 5 | 4.0 | 103 |
Cu(II) | CuSO4·5H2O | 2.0 | 0.5 | 4.8 | 123 |
F− | NaF | 19,500 | 5000 | 3.7 | 95.8 |
Fe(III) | Fe2(SO4)3 | 19.5 | 5 | 3.8 | 96.4 |
HPO42− | Na2HPO4·12H2O | 780 | 200 | 3.8 | 98.3 |
Hg(II) | Hg(NO3)2 | 78 | 20 | 3.9 | 100 |
Mg(II) | MgSO4·7H2O | 1950 | 500 | 3.9 | 100 |
Mn(II) | MnSO4·H2O | 7.8 | 2 | 3.9 | 99.0 |
Mo(VI) | (NH4)6Mo7O24·4H2O | 3900 | 1000 * | 4.2 | 106 |
Na(I) | NaCl | 39,000 | 10,000 * | 4.0 | 102 |
Ni(II) | NiSO4·7H2O | 2.0 | 0.5 | 4.1 | 105 |
NO3− | NH4NO3 | 39,000 | 10,000 * | 3.9 | 100 |
Re(VII) | NH4ReO4 | 3900 | 1000 * | 4.1 | 106 |
Pb(II) | Pb(NO3)2 | 3.9 | 1 | 4.8 | 123 |
SO42− | K2SO4 | 39,000 | 10,000 * | 3.9 | 100 |
V(V) | NH4VO3 | 7.8 | 2 | 4.0 | 104 |
W(VI) | Na2WO4·2H2O | 3900 | 1000 * | 3.8 | 98.0 |
#. | Sample | Zn Mass Fraction (wZn), % | Other Ingredients | wZn Found b,c, % |
---|---|---|---|---|
1 | Dermal ointment | 8.03 | 90% petrolatum | 8.0 ± 0.2 |
2 | Granulated zinc dust | 19.5 a | 26.9% Fe, 7.9% CaO, 5.45% SiO2, 2.57% Pb, 2.18% Cl, 1.78% MgO, 1.02% S, 0.53% Al, 0.24% Cu, 0.22% F, 0.07% Cd, 0.013% Sb, 0.009% As, 0.002% Co, 29 μg g−1 Tl, 22 μg g−1 Se, 14 μg g−1 Te, 10 μg g−1 Ge a | 19.8 ± 0.6 |
3 | Zinc concentrate | 49.7 a | 31.75% S, 1.75% SiO2, 1.1% Pb, 0.32% Al2O3, 0.24% Cd, 0.17% Cu, 0.08% CaO, 0.071% Sb, 0.07% MgO, 0.016%As, 0.01% Cl, 0.005% F, 0.002% Co, 0.001% Ni, 11 μg g−1 Tl, 10 μg g−1 Ge, 5 μg g−1 Se, 5 μg g−1 Te, 3 μg g−1 Hg a | 49.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavazov, K.B.; Racheva, P.V.; Saravanska, A.D.; Genc, F.; Delchev, V.B. Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II). Molecules 2024, 29, 4511. https://doi.org/10.3390/molecules29184511
Gavazov KB, Racheva PV, Saravanska AD, Genc F, Delchev VB. Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II). Molecules. 2024; 29(18):4511. https://doi.org/10.3390/molecules29184511
Chicago/Turabian StyleGavazov, Kiril B., Petya V. Racheva, Antoaneta D. Saravanska, Fatma Genc, and Vassil B. Delchev. 2024. "Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II)" Molecules 29, no. 18: 4511. https://doi.org/10.3390/molecules29184511
APA StyleGavazov, K. B., Racheva, P. V., Saravanska, A. D., Genc, F., & Delchev, V. B. (2024). Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II). Molecules, 29(18), 4511. https://doi.org/10.3390/molecules29184511