Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity of Essential Oils
2.2. Antimicrobial Effectiveness Test
2.3. In Vivo Efficiency
2.4. Sensory Analysis
3. Discussion
3.1. Cosmetic Matrix Type and Composition
3.2. Antimicrobial Effectiveness of Cosmetic Emulsion
3.3. In Vivo Biophysical Parameters of Cosmetic Emulsion
3.4. Sensory Analysis of Cosmetic Emulsion
4. Materials and Methods
4.1. Chemicals and Microorganisms
4.2. Disk Diffusion Method
4.3. Preparation of Model Emulsion Matrices
4.4. Antimicrobial Properties
4.5. Organoleptic Properties
4.6. Skin Diagnostics
4.6.1. Volunteers
4.6.2. Study Design
4.6.3. Non-Invasive Instrumental Bioengineering Methods
4.7. Statistical Analysis and Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.; Heleno, S.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.; Ferreira, I.; Barreiro, M. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009R1223-20180801 (accessed on 1 August 2023).
- ISO 22716:2007; Cosmetics—Good Manufacturing Practices—Guidelines on Good Manufacturing Practices. International Organization for Standardization: Geneva, Switzerland, 2007.
- Catovic, C.; Martin, S.; Desaint, S.; Borges, C.; Lesouhaitier, H.; Roullet, F.; Bresciani, N.; Jouault, A.-M.; Poulet, V.; Luc, J.; et al. Development of a Standardized Method to Evaluate the Protective Efficiency of Cosmetic Packaging against Microbial Contamination. AMB Express 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- ISO 29621:2017; Cosmetics—Microbiology—Guidelines for the Risk Assessment and Identification of Microbiologically Low-Risk Products. International Organization for Standardization: Geneva, Switzerland, 2017.
- Luger, T.; Amagai, M.; Dreno, B.; Dagnelie, M.-A.; Liao, W.; Kabashima, K.; Schikowski, T.; Proksch, E.; Elias, P.M.; Simon, M.; et al. Atopic Dermatitis: Role of the Skin Barrier, Environment, Microbiome, and Therapeutic Agents. J. Dermatol. Sci. 2021, 102, 142–157. [Google Scholar] [CrossRef] [PubMed]
- ISO 17516:2014; Cosmetics—Microbiology—Microbiological Limits. International Organization for Standardization: Geneva, Switzerland, 2014.
- Lundov, M.D.; Moesby, L.; Zachariae, C.; Johansen, J.D. Contamination Versus Preservation of Cosmetics: A Review on Legislation, Usage, Infections, and Contact Allergy. Contact Dermat. 2009, 60, 70–78. [Google Scholar] [CrossRef]
- Neza, E.; Centini, M. Microbiologically Contaminated and Over-Preserved Cosmetic Products According Rapex 2008–2014. Cosmetics 2016, 3, 3. [Google Scholar] [CrossRef]
- Kim, H.W.; Seok, Y.S.; Cho, T.J.; Rhee, M.S. Risk Factors Influencing Contamination of Customized Cosmetics Made On-the-Spot: Evidence from the National Pilot Project For Public Health. Sci. Rep. 2020, 10, 1561. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Vijayalakshmi, A.; Jagadeesan, M.; Somasundaram, A.; Pitchiah, S.; Gowri, S.S.; Ali Alharbi, S.; Javed Ansari, M.; Ramasamy, P. Preparation of self-preserving personal care cosmetic products using multifunctional ingredients and other cosmetic ingredients. Sci. Rep. 2024, 14, 19401. [Google Scholar] [CrossRef]
- Herman, A. Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products. Curr. Microbiol. 2019, 76, 744–754. [Google Scholar] [CrossRef]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Warshaw, E.M.; Sasseville, D.; Fowler, J.F.; DeKoven, J.G.; Pratt, M.D.; Maibach, H.I.; Taylor, J.S.; et al. Parabens. Dermatitis 2019, 30, 3–31. [Google Scholar] [CrossRef]
- Matwiejczuk, N.; Galicka, A.; Brzóska, M.M. Review of the Safety of Application of Cosmetic Products Containing Parabens. J. Appl. Toxicol. 2020, 40, 176–210. [Google Scholar] [CrossRef] [PubMed]
- Cherian, P.; Zhu, J.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Amended Safety Assessment of Parabens as Used in Cosmetics. Int. J. Toxicol. 2020, 39, 5S–97S. [Google Scholar] [CrossRef] [PubMed]
- Radu, C.-M.; Radu, C.C.; Bochiș, S.-A.; Arbănași, E.M.; Lucan, A.I.; Murvai, V.R.; Zaha, D.C. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. Pharmacy 2023, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The Potential Application of Some Novel Essential Oils as Natural Cosmetic Preservatives in an Aqueous Cream Formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Vostinaru, O.; Heghes, S.C.; Filip, L. Safety Profile of Essential Oils; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Choińska, R.; Dąbrowska, K.; Świsłocka, R.; Lewandowski, W.; Świergiel, A.H. Antimicrobial Properties of Mandelic Acid, Gallic Acid and Their Derivatives. Mini-Rev. Med. Chem. 2021, 21, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- Dębowska, R.M.; Kaszuba, A.; Michalak, I.; Dzwigałowska, A.; Cieścińska, C.; Jakimiuk, E.; Zielińska, J.; Kaszuba, A. Evaluation of the Efficacy and Tolerability of Mandelic Acid-Containing Cosmetic Formulations for Acne Skin Care. Dermatol. Rev. 2015, 4, 316–321. [Google Scholar] [CrossRef]
- Świsłocka, R.; Świderski, G.; Nasiłowska, J.; Sokołowska, B.; Wojtczak, A.; Lewandowski, W. Research on the Electron Structure and Antimicrobial Properties of Mandelic Acid and Its Alkali Metal Salts. Int. J. Mol. Sci. 2023, 24, 3078. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, X.; Zhang, S.; Thorne, R.F.; Zhang, S. Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon flexuosus) and Its Active Component Citral against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Front. Cell. Infect. Microbiol. 2020, 10, 603858. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-R.; Shi, Q.-S.; Liang, Q.; Xie, X.-B.; Huang, X.-M.; Chen, Y.-B.; Hong, Y. Antibacterial Activity and Kinetics of Litsea Cubeba Oil on Escherichia Coli. PLoS ONE 2014, 9, e110983. [Google Scholar] [CrossRef] [PubMed]
- Herman, A. Comparison of Antimicrobial Activity of Essential Oils, Plant Extracts and Methylparaben in Cosmetic Emulsions: 2 Months Study. Indian J. Microbiol. 2014, 54, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Kočevar Glavač, N.; Lunder, M. Preservative Efficacy of Selected Antimicrobials of Natural Origin in a Cosmetic Emulsion. Int. J. Cosmet. Sci. 2018, 40, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Shkreli, R.; Terziu, R.; Memushaj, L.; Dhamo, K.; Malaj, L. Selected Essential Oils as Natural Ingredients in Cosmetic Emulsions: Development, Stability Testing and Antimicrobial Activity. Indian J. Pharm. Educ. Res. 2023, 57, 125–133. [Google Scholar] [CrossRef]
- Egner, P.; Pavlačková, J.; Sedlaříková, J.; Pleva, P.; Mokrejš, P.; Janalíková, M. Non-Alcohol Hand Sanitiser Gels with Mandelic Acid and Essential Oils. Int. J. Mol. Sci. 2023, 24, 3855. [Google Scholar] [CrossRef]
- Polaskova, J.; Pavlackova, J.; Egner, P. Effect of Vehicle on the Performance of Active Moisturizing Substances. Ski. Res. Technol. 2015, 21, 403–412. [Google Scholar] [CrossRef]
- Kulawik-Pióro, A.; Miastkowska, M. Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. Int. J. Mol. Sci. 2021, 22, 5124. [Google Scholar] [CrossRef]
- Chorilli, M.; Prestes, P.S.; Rigon, R.B.; Leonardi, G.R.; Chiavacci, L.A.; Sarmento, V.H.V.; Oliveira, A.G.; Scarpa, M.V. Structural Characterization and in Vivo Evaluation of Retinyl Palmitate in Non-Ionic Lamellar Liquid Crystalline System. Colloids Surf. B Biointerfaces 2011, 85, 182–188. [Google Scholar] [CrossRef]
- Fluhr, J.; Rigano, L. Clinical Effects of Cosmetic Vehicles on Skin. J. Cosmet. Sci. 2004, 55, 189–205. [Google Scholar]
- Gloor, M.; Gehring, W. Increase in Hydration and Protective Function of Horny Layer by Glycerol and a W/O Emulsion: Are These Effects Maintained During Long-Term Use? Contact Dermat. 2001, 44, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Orchard, A.; van Vuuren, S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evid.-Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.F.; Carroll, K.C.; Butel, J.S.; Morse, S.A. Jawetz, Melnick & Adelberg’s Medical Microbiology, 24th ed.; McGraw-Hill Education—Europe: New York, NY, USA, 2007; ISBN 978-0071287357. [Google Scholar]
- Danby, S.G.; AlEnezi, T.; Sultan, A.; Lavender, T.; Chittock, J.; Brown, K.; Cork, M.J. Effect of Olive and Sunflower Seed Oil on the Adult Skin Barrier: Implications for Neonatal Skin Care. Pediatr. Dermatol. 2013, 30, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-K.; Zhong, L.; Santiago, J. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2018, 19, 70. [Google Scholar] [CrossRef]
- Maanikuu, P.M.I.; Peker, K. Medicinal and Nutritional Benefits from the Shea Tree- (Vitellaria Paradoxa). J. Biol. Agric. Healthc. 2017, 7, 51–57. [Google Scholar]
- Nong, Y.; Maloh, J.; Natarelli, N.; Gunt, H.B.; Tristani, E.; Sivamani, R.K. A Review of the Use of Beeswax in Skincare. J. Cosmet. Dermatol. 2023, 22, 2166–2173. [Google Scholar] [CrossRef]
- Singh, M.; Agarwal, S.; Agarwal, M. Rachana Benefits of Theobroma cacao and Its Phytocompounds as Cosmeceuticals. In Plant-Derived Bioactives; Springer: Singapore, 2020; pp. 509–521. ISBN 978-981-15-1760-0. [Google Scholar]
- Mandal, Š. Physical and Chemical Properties of Selected Sample of Castor Oil, Ricinus communis L. Kem. Ind. 2023, 72, 187–192. [Google Scholar] [CrossRef]
- Olivoil Avenate Emulsifier. Available online: https://www.kosuro.cz/fotky49995/fotov/_ps_65prezentace-OLIVOIL-AVENATE-EMULSIFIER.pdf (accessed on 5 May 2024).
- Motamedifar, M.; Bazargani, A.; Reza Namaz, M.; Sedigh Ebrahim Sarai, H. Antimicrobial Activity of Mandelic Acid Against Methicillin-Resistant Staphylococcus aureus: A Novel Finding with Important Practical Implications. World Appl. Sci. J. 2014, 31, 925–929. [Google Scholar]
- Saehuan, C.; Pinitchun, C.; Yimsiri, P. Antibacterial Activity of Mandelic Acid Against Klebsiella Pneumoniae. J. Nurs. Health Sci. 2022, 16, 55–65. [Google Scholar]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Taylor, M.B. Summary of Mandelic Acid for the Improvement of Skin Conditions. Cosmet. Dermatol. 1999, 12, 26–28. [Google Scholar]
- Nikolić, M.; Jovanović, K.K.; Marković, T.; Marković, D.; Gligorijević, N.; Radulović, S.; Soković, M. Chemical Composition, Antimicrobial, and Cytotoxic Properties of Five Lamiaceae Essential Oils. Ind. Crops Prod. 2014, 61, 225–232. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Baek, K.-H. Biological Efficacy and Application of Essential Oils in Foods—A Review. J. Essent. Oil Bear. Plants 2016, 19, 1–19. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Alderees, F.; Mereddy, R.; Webber, D.; Nirmal, N.; Sultanbawa, Y. Mechanism of Action Against Food Spoilage Yeasts and Bioactivity of Tasmannia Lanceolata, Backhousia Citriodora and Syzygium Anisatum Plant Solvent Extracts. Foods 2018, 7, 179. [Google Scholar] [CrossRef]
- Prakash, B.; Singh, P.; Kedia, A.; Dubey, N.K. Assessment of Some Essential Oils as Food Preservatives Based on Antifungal, Antiaflatoxin, Antioxidant Activities and in Vivo Efficacy in Food System. Food Res. Int. 2012, 49, 201–208. [Google Scholar] [CrossRef]
- Blum, H.E. The Human Microbiome. Adv. Med. Sci. 2017, 62, 414–420. [Google Scholar] [CrossRef]
- Pavlačková, J.; Egner, P.; Slavík, R.; Mokrejš, P.; Gál, R. Hydration and Barrier Potential of Cosmetic Matrices with Bee Products. Molecules 2020, 25, 2510. [Google Scholar] [CrossRef]
- De Paepe, K.; Derde, M.-P.; Roseeuw, D.; Rogiers, V. Claim Substantiation and Efficiency of Hydrating Body Lotions and Protective Creams. Contact Dermat. 2000, 42, 227–234. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal Ph of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Dal’Belo, S.E.; Rigo Gaspar, L.; Berardo Gonçalves Maia Campos, P.M. Moisturizing Effect of Cosmetic Formulations Containing Aloe vera Extract in Different Concentrations Assessed by Skin Bioengineering Techniques. Ski. Res. Technol. 2006, 12, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Roussel, L.; Atrux-Tallau, N.; Pirot, F. Glycerol as a Skin Barrier Influencing Humectant. In Treatment of Dry Skin Syndrome; Springer: Berlin/Heidelberg, Germany, 2012; pp. 473–480. ISBN 978-3-642-27605-7. [Google Scholar]
- Lodén, M.; Wessman, W. the Influence of a Cream Containing 20% Glycerin and Its Vehicle on Skin Barrier Properties. Int. J. Cosmet. Sci. 2001, 23, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, A.K.; Gupta, A.; Bishayee, A.; Pandey, A.K. Therapeutic Potential of Aloe vera—A Miracle Gift of Nature. Phytomedicine 2019, 60, 152996. [Google Scholar] [CrossRef]
- Duncan, C.N.; Riley, T.V.; Carson, K.C.; Budgeon, C.A.; Siffleet, J. The Effect of an Acidic Cleanser Versus Soap on the Skin pH and Micro-Flora of Adult Patients: A Non-Randomised Two Group Crossover Study in an Intensive Care Unit. Intensive Crit. Care Nurs. 2013, 29, 291–296. [Google Scholar] [CrossRef]
- Gfatter, R.; Hackl, P.; Braun, F. Effects of Soap and Detergents on Skin Surface Ph, Stratum Corneum Hydration and Fat Content in Infants. Dermatology 2004, 195, 258–262. [Google Scholar] [CrossRef]
- Blaak, J.; Dähnhardt, D.; Dähnhardt-Pfeiffer, S.; Bielfeldt, S.; Wilhelm, K.-P.; Wohlfart, R.; Staib, P. A Plant Oil-Containing pH 4 Emulsion Improves Epidermal Barrier Structure and Enhances Ceramide Levels in Aged Skin. Int. J. Cosmet. Sci. 2017, 39, 284–291. [Google Scholar] [CrossRef]
- Pavlačková, J.; Egner, P.; Sedláček, T.; Mokrejš, P.; Sedlaříková, J.; Polášková, J. in Vivo Efficacy and Properties of Semisolid Formulations Containing Panthenol. J. Cosmet. Dermatol. 2019, 18, 346–354. [Google Scholar] [CrossRef]
- Calixto, L.S.; Infante, V.H.P.; Maia Campos, P.M.B.G. Design and Characterization of Topical Formulations: Correlations Between Instrumental and Sensorial Measurements. AAPS Pharmscitech 2018, 19, 1512–1519. [Google Scholar] [CrossRef]
- Savary, G.; Grisel, M.; Picard, C. Impact of Emollients on the Spreading Properties of Cosmetic Products: A Combined Sensory and Instrumental Characterization. Colloids Surf. B Biointerfaces 2013, 102, 371–378. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition: CLSI Document M02-A12; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 35, ISBN 1-56238-986-6. [Google Scholar]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 8589:2007; Sensory Analysis General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 8587:2006; Sensory Analysis—Methodology—Ranking. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 5495:2005; Sensory Analysis—Methodology—Paired Comparison Test. International Organization for Standardization: Geneva, Switzerland, 2023.
- CIOMS. International Ethical Guidelines for Health-Related Research Involving Humans. Available online: https://cioms.ch/publications/product/international-ethical-guidelines-for-health-related-research-involving-humans/ (accessed on 13 January 2023).
- The Corneometer® Cm 825 Manual; Courage+Khazaka Electronic: Köln, Germany, 2022; pp. 1–9.
- The Tewameter® Tm 300 Manual; Courage+Khazaka Electronic: Köln, Germany, 2022; pp. 1–15.
- The Skin-Ph-Meter® Ph 905; Courage+Khazaka Electronic: Köln, Germany, 2022; pp. 1–7.
Gram-Positive Bacteria | Gram-Negative Bacteria | Yeasts | |||||
---|---|---|---|---|---|---|---|
SA | CuA | EC | PA | KO | KA | CA | |
Control (water) | 6.0 ± 0.1 a | 6.0 ± 0.1 a | 6.0 ± 0.1 a | 6.0 ± 0.1 a | 6.0 ± 0.1 a | 6.0 ± 0.1 a | 6.0 ± 0.1 a |
Satureja MontanaOil | 27.7 ± 4.0 b | 30.3 ± 4.7 b | 25.3 ± 4.2 b | 10.0 ± 6.9 a | 24.7 ± 2.5 b | 25.0 ± 6.1 b | 20.3 ± 3.7 b |
LemongrassOil | 45.3 ± 5.9 c | 28.7 ± 5.1 b | 17.0 ± 2.6 c | 6.0 ± 0.1 a | 29.0 ± 8.5 b,c | 16.7 ± 3.1 b | 22.3 ± 4.1 b |
Litsea CubebaOil | 33.8 ± 7.6 b | 17.8 ± 8.4 b | 18.0 ± 0.1 c | 6.0 ± 0.1 a | 34.7 ± 4.2 c | 18.0 ± 3.5 b | 6.0 ± 0.1 a |
Days | 7 | 14 | 28 | 7 | 14 | 28 |
---|---|---|---|---|---|---|
Staphylococcus aureus | Pseudomonas aeruginosa | |||||
B | 3.82 | <2.30 | <2.30 | 7.00 | 7.40 | 6.73 |
BS | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 |
BG | 2.35 | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 |
BL | <2.30 | <2.30 | <2.30 | 3.99 | 6.00 | 5.49 |
BM | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 |
BMS | <2.30 | <2.30 | <2.30 | 6.00 | 6.03 | 5.68 |
BMG | <2.30 | <2.30 | <2.30 | 3.33 | <2.30 | <2.30 |
BML | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 | <2.30 |
Ranking Test | B | BS | BG | BL | BM | BMS | BMG | BML |
---|---|---|---|---|---|---|---|---|
Spreadability | 86 | 75 | 62 | 58 | 46 | 47 | 48 | 46 |
Preference | 66 | 63 | 48 | 39 | 70 | 74 | 56 | 52 |
Paired comparison test | B–BM | BS–BMS | BG–BMG | BL–BML | ||||
Absorbency | 6–7 | 9–4 | 9–4 | 6–7 |
Base Emulsion Matrix (B) | ||||
---|---|---|---|---|
Aqueous phase | Ingredients (INCI a) | [wt%] | Function | Supplier |
Aqua | 60 | Solvent | Tomas Bata University in Zlín (Zlín, Czech Republic) | |
Aloe Barbadensis Extract | 2 | Regenerating/Revitalizing/Moisturizing | Kosmetické suroviny Ltd. (Praha, Czech Republic) | |
Glycerin | 4 | Humectant | Kosmetické suroviny Ltd. (Praha, Czech Republic) | |
Oil phase | Helianthus Annuus (Sunflower) Seed Oil | 10 | Emollient/Moisturizing/Skin conditioning | Libor Baránek (Uherské Hradiště, Czech Republic) |
Butyrospermum Parkii | 4 | Skin conditioning | Kosmetické suroviny Ltd. (Praha, Czech Republic) | |
Cera Alba | 4 | Emollient/Emulsifier | Kosmetické suroviny Ltd. (Praha, Czech Republic) | |
Theobroma Cacao (Cocoa) Seed Butter | 2 | Emollient/Protective | Kerfoot Group (Northallerton, United Kingdom) | |
Ricinus Communis Seed Oil | 2 | Solvent/Emollient | Míča a Harašta (Praha, Czech Republic) | |
Olivoil Avenate Emulsifier® (Aqua, Glyceryl Oleate, Cetearyl Alcohol, Glyceryl Stearate, Potassium Olivoyl Hydrolyzed Oat Protein) | 12 | Emulsifier/Emollient | Kosmetické suroviny Ltd. (Praha. Czech Republic) | |
99.8 wt% B + 0.2 wt% essential oil (EO) | ||||
Satureja Montana Oil | 0.2 | Antimicrobial agent | Nobilis Tilia (Krásná Lípa, Czech Republic) | |
Cymbopogon Schoenanthus (Lemongrass) Oil | 0.2 | Antimicrobial agent | Nobilis Tilia (Krásná Lípa, Czech Republic) | |
Litsea Cubeba Oil | 0.2 | Antimicrobial agent | Saloos (Blansko, Czech Republic) | |
95.0 wt% B + 5 wt% Mandelic Acid (M) solution | ||||
Mandelic Acid | 5 | Antimicrobial agent | Sigma-Aldrich (St. Louis, MO, USA) | |
94.8 wt% B + 5 wt% Mandelic Acid (M) + 0.2 wt% essential oil (EO) | ||||
Satureja Montana Oil | 0.2 | Antimicrobial agent | Nobilis Tilia (Krásná Lípa, Czech Republic) | |
Cymbopogon Schoenanthus (Lemongrass) Oil | 0.2 | Antimicrobial agent | Nobilis Tilia (Krásná Lípa, Czech Republic) | |
Litsea Cubeba Oil | 0.2 | Antimicrobial agent | Saloos (Blansko, Czech Republic) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlačková, J.; Egner, P.; Mokrejš, P.; Janalíková, M. Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives. Molecules 2024, 29, 4510. https://doi.org/10.3390/molecules29184510
Pavlačková J, Egner P, Mokrejš P, Janalíková M. Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives. Molecules. 2024; 29(18):4510. https://doi.org/10.3390/molecules29184510
Chicago/Turabian StylePavlačková, Jana, Pavlína Egner, Pavel Mokrejš, and Magda Janalíková. 2024. "Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives" Molecules 29, no. 18: 4510. https://doi.org/10.3390/molecules29184510
APA StylePavlačková, J., Egner, P., Mokrejš, P., & Janalíková, M. (2024). Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives. Molecules, 29(18), 4510. https://doi.org/10.3390/molecules29184510