Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity and pH
2.2. HPLC Analysis
2.3. Ex Vivo Skin Permeation
2.3.1. Antioxidant Activity and Total Polyphenol Content
2.3.2. Phenolic Acid and Caffeine Content
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. HPLC Analysis
4.2.2. Evaluation of the Antioxidant Activity and Total Polyphenol Content
4.2.3. Ex Vivo Skin Permeation Studies
4.2.4. pH Evaluation
4.2.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Wójciak, M.; Szczepanek, D.; Sowa, I. Assessment of Cosmetic and Dermatological Properties and Safety of Use of Model Skin Tonics with Kombucha-Fermented Red Berry Extracts. Int. J. Mol. Sci. 2022, 23, 14675. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, W.; Motyl, I.; Śmigielski, K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022, 27, 4845. [Google Scholar] [CrossRef] [PubMed]
- Thiele, J.J.; Dreher, F.; Packer, L. Antioxidant Defense Systems in Skin. J. Toxicol. Cutan. Ocul. Toxicol. 2002, 21, 119–160. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comp. Rev. Food Sci. Food Safe 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.-X.; Mutukumira, A.N. Kombucha: Production and Microbiological Research. Foods 2022, 11, 3456. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Uțoiu, E.; Matei, F.; Toma, A.; Diguță, C.; Ștefan, L.; Mănoiu, S.; Vrăjmașu, V.; Moraru, I.; Oancea, A.; Israel-Roming, F.; et al. Bee Collected Pollen with Enhanced Health Benefits, Produced by Fermentation with a Kombucha Consortium. Nutrients 2018, 10, 1365. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha Tea Fermentation: Microbial and Biochemical Dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented Beverages with Health-Promoting Potential: Past and Future Perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Sathishkumar, M. Kombucha Tea: Metabolites. In Fungal Metabolites; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2017; pp. 965–978. [Google Scholar]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of Fermentation Time on the Content of Bioactive Compounds with Cosmetic and Dermatological Properties in Kombucha Yerba Mate Extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Bujak, T.; Wójciak, M.; Sowa, I. Evaluation of Cosmetic and Dermatological Properties of Kombucha-Fermented Berry Leaf Extracts Considered to Be By-Products. Molecules 2022, 27, 2345. [Google Scholar] [CrossRef]
- Pakravan, N.; Mahmoudi, E.; Hashemi, S.; Kamali, J.; Hajiaghayi, R.; Rahimzadeh, M.; Mahmoodi, V. Cosmeceutical Effect of Ethyl Acetate Fraction of Kombucha Tea by Intradermal Administration in the Skin of Aged Mice. J. Cosmet. Dermatol. 2018, 17, 1216–1224. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Ziemlewska, A.; Bujak, T.; Zagórska-Dziok, M.; Zarębska, M.; Hordyjewicz-BaranHord, Z.; Wasilewski, T. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef]
- Teixeira Oliveira, J.; Machado Da Costa, F.; Gonçalvez Da Silva, T.; Dotto Simões, G.; Dos Santos Pereira, E.; Quevedo Da Costa, P.; Andreazza, R.; Cavalheiro Schenkel, P.; Pieniz, S. Green Tea and Kombucha Characterization: Phenolic Composition, Antioxidant Capacity and Enzymatic Inhibition Potential. Food Chem. 2023, 408, 135206. [Google Scholar] [CrossRef]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. Neuroendocrine Aspects of Skin Aging. Int. J. Mol. Sci. 2019, 20, 2798. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.A.; Uekane, T.M.; Miranda, J.F.D.; Ruiz, L.F.; Motta, J.C.B.D.; Silva, C.B.; Pitangui, N.D.S.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha Beverage from Non-Conventional Edible Plant Infusion and Green Tea: Characterization, Toxicity, Antioxidant Activities and Antimicrobial Properties. Biocatal. Agric. Biotechnol. 2021, 34, 102032. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; Dos Santos D’Almeida, C.T.; Do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; Barros, F.A.R.D. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Chu, S.-C.; Chen, C. Effects of Origins and Fermentation Time on the Antioxidant Activities of Kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in Free-Radical Scavenging Ability of Kombucha Tea during Fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef]
- Saimaiti, A.; Huang, S.-Y.; Xiong, R.-G.; Wu, S.-X.; Zhou, D.-D.; Yang, Z.-J.; Luo, M.; Gan, R.-Y.; Li, H.-B. Antioxidant Capacities and Polyphenol Contents of Kombucha Beverages Based on Vine Tea and Sweet Tea. Antioxidants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Saimaiti, A.; Luo, M.; Huang, S.-Y.; Xiong, R.-G.; Shang, A.; Gan, R.-Y.; Li, H.-B. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.-G.; Kim, M.K. Volatile and Non-Volatile Compounds in Green Tea Affected in Harvesting Time and Their Correlation to Consumer Preference. J. Food Sci. Technol. 2016, 53, 3735–3743. [Google Scholar] [CrossRef]
- Alonso, C.; Martí, M.; Barba, C.; Lis, M.; Rubio, L.; Coderch, L. Skin Penetration and Antioxidant Effect of Cosmeto-Textiles with Gallic Acid. J. Photochem. Photobiol. B Biol. 2016, 156, 50–55. [Google Scholar] [CrossRef]
- Shin, S.; Cho, S.H.; Park, D.; Jung, E. Anti-skin Aging Properties of Protocatechuic Acid In Vitro and In Vivo. J. Cosmet. Dermatol. 2020, 19, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Cagide, F.; Simões, J.; Pita, C.; Pereira, E.; Videira, A.J.C.; Soares, P.; Duarte, J.F.S.; Santos, A.M.S.; Oliveira, P.J.; et al. Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach. Molecules 2022, 27, 6183. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Caffeine’s Mechanisms of Action and Its Cosmetic Use. Skin Pharmacol. Physiol. 2013, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Cybulska, K.; Makuch, E.; Kucharski, Ł.; Różewicka-Czabańska, M.; Prowans, P.; Czapla, N.; Bargiel, P.; Petriczko, J.; Klimowicz, A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules 2021, 26, 329. [Google Scholar] [CrossRef]
- Bertges, F.S.; Da Penha Henriques Do Amaral, M.; Rodarte, M.P.; Vieira Fonseca, M.J.; Sousa, O.V.; Pinto Vilela, F.M.; Alves, M.S. Assessment of Chemical Changes and Skin Penetration of Green Arabica Coffee Beans Biotransformed by Aspergillus oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101512. [Google Scholar] [CrossRef]
- Makuch, E.; Nowak, A.; Günther, A.; Pełech, R.; Kucharski, Ł.; Duchnik, W.; Klimowicz, A. Enhancement of the Antioxidant and Skin Permeation Properties of Eugenol by the Esterification of Eugenol to New Derivatives. AMB Expr. 2020, 10, 187. [Google Scholar] [CrossRef]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Factors influencing the percutaneous penetration of active ingerdients. Wiad. Chem. 2011, 65, 3–4. [Google Scholar]
- Abd, E.; Roberts, M.S.; Grice, J.E. A Comparison of the Penetration and Permeation of Caffeine into and through Human Epidermis after Application in Various Vesicle Formulations. Skin Pharmacol. Physiol. 2016, 29, 24–30. [Google Scholar] [CrossRef]
- Sae Yoon, A.; Sakdiset, P. Development of Microemulsions Containing Glochidion Wallichianum Leaf Extract and Potential for Transdermal and Topical Skin Delivery of Gallic Acid. Sci. Pharm. 2020, 88, 53. [Google Scholar] [CrossRef]
- Rahmawati, I.; Amini, H.W.; Darmayanti, R.F. Molecular Modelling of Antioxidant Agent by QSAR Study of Caffeic Acid Derivatives. IOP Conf. Ser. Mater. Sci. Eng. 2020, 823, 012001. [Google Scholar] [CrossRef]
- Jankowski, A.; Dyja, R.; Hujar, B.S. Dermal and Transdermal Delivery of Active Substances from Semisolid Bases. Indian J. Pharm. Sci. 2017, 79, 488–500. [Google Scholar] [CrossRef]
- Alonso, C.; Lucas, R.; Barba, C.; Marti, M.; Rubio, L.; Comelles, F.; Morales, J.C.; Coderch, L.; Parra, J.L. Skin Delivery of Antioxidant Surfactants Based on Gallic Acid and Hydroxytyrosol. J. Pharm. Pharmacol. 2015, 67, 900–908. [Google Scholar] [CrossRef]
- Asbill, C.S.; Michniak, B.B. Percutaneous Penetration Enhancers: Local versus Transdermal Activity. Pharm. Sci. Technol. Today 2000, 3, 36–41. [Google Scholar] [CrossRef]
- Diembeck, W.; Beck, H.; Benech-Kieffer, F.; Courtellemont, P.; Dupuis, J.; Lovell, W.; Paye, M.; Spengler, J.; Steiling, W. Test Guidelines for In Vitro Assessment of Dermal Absorption and Percutaneous Penetration of Cosmetic Ingredients. Food Chem. Toxicol. 1999, 37, 191–205. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V.; Gautam, A.K.; Yadav, A.K.; Vijayakumar, M.R. Toxicokinetic and Toxicodynamic Studies of Cosmetics and Personal Care Products Using 3D Skin Models: Progress Made and Path Ahead. In Skin 3-D Models and Cosmetics Toxicity; Springer Nature: Singapore, 2023; pp. 237–248. [Google Scholar]
- Lichterfeld-Kottner, A.; El Genedy, M.; Lahmann, N.; Blume-Peytavi, U.; Büscher, A.; Kottner, J. Maintaining Skin Integrity in the Aged: A Systematic Review. Int. J. Nurs. Stud. 2020, 103, 103509. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, S.; Dasgupta, B.R.; Ananthapadmanabhan, K.P. Role of pH in Skin Cleansing. Int. J. Cosmet. Sci. 2021, 43, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zagórska-Dziok, M.; Ossowicz-Rupniewska, P.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Prowans, P.; Czapla, N.; Bargiel, P.; et al. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021, 26, 3456. [Google Scholar] [CrossRef]
- Nowak, A.; Duchnik, W.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Zielonka-Brzezicka, J.; Nowak, A.; Klimowicz, A. The Changes of Antioxidant Activity of Three Varieties of ‘Nalewka’, a Traditional Polish Fruit Alcoholic Beverage during Long-Term Storage. Appl. Sci. 2023, 13, 1114. [Google Scholar] [CrossRef]
- Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine Ear Skin: An In Vitro Model for Human Skin. Skin Res. Technol. 2007, 13, 19–24. [Google Scholar] [CrossRef]
- Khiao In, M.; Richardson, K.C.; Loewa, A.; Hedtrich, S.; Kaessmeyer, S.; Plendl, J. Histological and Functional Comparisons of Four Anatomical Regions of Porcine Skin with Human Abdominal Skin. Anat. Histol. Embryol. 2019, 48, 207–217. [Google Scholar] [CrossRef]
- Badran, M.M.; Kuntsche, J.; Fahr, A. Skin Penetration Enhancement by a Microneedle Device (Dermaroller®) In Vitro: Dependency on Needle Size and Applied Formulation. Eur. J. Pharm. Sci. 2009, 36, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Michniak-Kohn, B. Effects of Solvents and Penetration Enhancers on Transdermal Delivery of Thymoquinone: Permeability and Skin Deposition Study. Drug Deliv. 2018, 25, 1943–1949. [Google Scholar] [CrossRef]
- Kuntsche, J.; Bunjes, H.; Fahr, A.; Pappinen, S.; Rönkkö, S.; Suhonen, M.; Urtti, A. Interaction of Lipid Nanoparticles with Human Epidermis and an Organotypic Cell Culture Model. Int. J. Pharm. 2008, 354, 180–195. [Google Scholar] [CrossRef]
- Simon, A.; Amaro, M.I.; Healy, A.M.; Cabral, L.M.; De Sousa, V.P. Comparative Evaluation of Rivastigmine Permeation from a Transdermal System in the Franz Cell Using Synthetic Membranes and Pig Ear Skin with In Vivo-In Vitro Correlation. Int. J. Pharm. 2016, 512, 234–241. [Google Scholar] [CrossRef]
- Kopečná, M.; Macháček, M.; Nováčková, A.; Paraskevopoulos, G.; Roh, J.; Vávrová, K. Esters of Terpene Alcohols as Highly Potent, Reversible, and Low Toxic Skin Penetration Enhancers. Sci. Rep. 2019, 9, 14617. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.J.; Ward, R.J.; Heylings, J.R. Multi-Species Assessment of Electrical Resistance as a Skin Integrity Marker for In Vitro Percutaneous Absorption Studies. Toxicol. In Vitro 2004, 18, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kopečná, M.; Macháček, M.; Prchalová, E.; Štěpánek, P.; Drašar, P.; Kotora, M.; Vávrová, K. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery. Pharm. Res. 2017, 34, 2097–2108. [Google Scholar] [CrossRef] [PubMed]
Type of Kombucha | DPPH | ABTS | FRAP | TPC | ||
---|---|---|---|---|---|---|
(%RSA) | (mmol trolox·dm−3) | (%RSA) | (mmol trolox·dm−3) | (mmol FeSO4·dm−3) | (mg GA·dm−3) | |
GTK | 87.08 ± 0.72 a | 0.82 ± 0.01 a | 93.88 ± 0.21 a | 3.43 ± 0.01 a | 8.87 ± 0.49 a | 195.84 ± 0.00 a |
BTK | 87.68 ± 0.29 a | 0.83 ± 0.00 a | 71.01 ± 1.01 b | 2.59 ± 0.05 b | 3.36 ± 0.12 b | 188.13 ± 0.01 a |
Green Tea Kombucha (mg·dm−3) | Black Tea Kombucha (mg·dm−3) | |
---|---|---|
gallic acid | 32.84 ± 0.52 a | 49.22 ± 1.65 b |
protocatechuic acid | 3.43 ± 0.19 a | 5.01 ± 0.40 b |
chlorogenic acid | 5.13 ± 0.58 a | 7.60 ± 0.21 b |
caffeic acid | 20.12 ± 0.46 a | 30.50 ± 0.39 b |
caffeine | 102.87 ± 0.87 a | 165.49 ± 6.41 b |
m-hydroxybenzoic | 10.96 ± 0.78 a | 19.15 ± 0.56 b |
coumaric acid | 12.31 ± 0.31 a | 19.29 ± 0.69 b |
Green Tea Kombucha | Black Tea Kombucha | |||
---|---|---|---|---|
DPPH (mmol trolox·dm−3) | TPC (mg GA·dm−3) | DPPH (mmol trolox·dm−3) | TPC (mg GA·dm−3) | |
kombucha applied to the skin | 0.82 ± 0.01 a | 195.84 ± 0.00 a | 0.83 ± 0.00 a | 188.13 ± 0.01 a |
extract of skin extraction after 24-h permeation | 0.31 ± 0.03 a | 88.27 ± 0.01 a | 0.40 ± 0.01 b | 104.02 ± 0.01 b |
extract of skin extraction after 24-h permeation (%) | 37.80 | 45.07 | 48.19 | 55.29 |
acceptor fluid after 24-h permeation | 0.05 ± 0.01 a | 24.60 ± 0.01 a | 0.07 ± 0.02 a | 28.28 ± 0.01 a |
acceptor fluid after 24-h permeation (%) | 6.09 | 12.56 | 8.43 | 15.03 |
Green Tea Kombucha | Black Tea Kombucha | |||||||
---|---|---|---|---|---|---|---|---|
Cumulating in the Skin | Acceptor Fluid after 24-h Permeation | Cumulating in the Skin | Acceptor Fluid after 24-h Permeation | |||||
(µg·g−1 of Skin) | (%) | (µg) | (%) | (µg·g−1 of Skin) | (%) | (µg) | (%) | |
gallic acid | 123.26 ± 6.49 a | 38.47 | 4.58 ± 0.307 b | 1.74 | 126.87 ± 3.80 a | 26.44 | 6.50 ± 0.58 a | 1.65 |
protocatechuic acid | 28.31 ± 1.87 a | 17.09 | 15.87 ± 0.59 a | 5.83 | 28.07 ± 1.21 a | 5.75 | 6.46 ± 1.11 b | 1.59 |
chlorogenic acid | 12.31 ± 0.81 a | 24.68 | 3.89 ±0.58 a | 9.48 | 3.19 ± 0.49 b | 4.49 | 2.19 ± 0.10 b | 3.61 |
caffeic acid | 42.60 ± 1.57 a | 21.75 | 2.02 ± 0.13 a | 1.00 | 19.23 ± 2.11 b | 6.73 | 2.29 ± 0.14 a | 0.75 |
caffeine | 304.84 ± 18.46 a | 30.43 | 36.01 ± 3.73 b | 4.38 | 449.09 ± 36.14 b | 29.00 | 62.68 ± 1.18 a | 4.73 |
m-hydroxybenzoic acid | 29.05 ± 3.42 b | 27.13 | 8.50 ± 0.94 a | 9.69 | 143.59 ± 17.82 a | 76.95 | 2.23 ± 0.11 b | 1.46 |
coumaric acid | 30.88 ± 2.17 a | 25.75 | 5.93 ± 0.76 a | 6.02 | 20.26 ± 1.02 b | 11.25 | 5.74 ± 0.25 a | 3.71 |
Type of Kombucha | Composition | Energy Value per 100 mL | Fat, Including Saturated Acids (g) | Carbohydrate, Including Sugars (g) | Protein (g) | Salt (g) | Alcohol (%) |
---|---|---|---|---|---|---|---|
black tea (BTK) | Water, black tea, cane sugar, live bacteria cultures, hibiscus (10%) | 26 kcal | <0.1 (<0.1) | 6.3 (6.3) | <0.3 | 0.0062 | <1.2 |
green tea (GTK) | Water, green tea, cane sugar, live bacteria cultures | 26 kcal | <0.1 (<0.1) | 6.3 (6.3) | <0.3 | 0.0062 | <1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, K.; Nowak, A.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Szymczykowska, K.; Janda-Milczarek, K. Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study. Molecules 2024, 29, 1018. https://doi.org/10.3390/molecules29051018
Jakubczyk K, Nowak A, Muzykiewicz-Szymańska A, Kucharski Ł, Szymczykowska K, Janda-Milczarek K. Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study. Molecules. 2024; 29(5):1018. https://doi.org/10.3390/molecules29051018
Chicago/Turabian StyleJakubczyk, Karolina, Anna Nowak, Anna Muzykiewicz-Szymańska, Łukasz Kucharski, Kinga Szymczykowska, and Katarzyna Janda-Milczarek. 2024. "Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study" Molecules 29, no. 5: 1018. https://doi.org/10.3390/molecules29051018
APA StyleJakubczyk, K., Nowak, A., Muzykiewicz-Szymańska, A., Kucharski, Ł., Szymczykowska, K., & Janda-Milczarek, K. (2024). Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study. Molecules, 29(5), 1018. https://doi.org/10.3390/molecules29051018