A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring
Abstract
:1. Introduction
2. Results
2.1. Sequence Analysis, Heterologous Expression, Protein Isolation, and Purification
2.2. Enzyme Properties
2.2.1. Optimum Temperature and Thermal Stability of Recombinant β-Glucosidase
2.2.2. Optimum pH and pH Stability of Recombinant β-Glucosidase
2.2.3. Effect of Metal Ions and Chemical Reagents on Enzyme Stability
2.2.4. Effect of Glucose Concentration on Enzyme Activity
2.2.5. Substrate Specificity and Enzyme Kinetic Parameters of LQ-BG5
3. Discussion
4. Materials and Methods
4.1. Culture Medium, Strain, and Plasmid
4.2. Sample Collection, Metagenomic Sequencing, and Sequence Analysis
4.3. Gene Amplification, Cloning, and Recombinant Vector Construction
4.4. Heterologous Expression and Purification of LQ-BG5
4.5. Enzymatic Characterisation of Recombinant β-Glucosidase LQ-BG5
4.5.1. Determination of β-Glucosidase Activity
4.5.2. Optimum Temperature and Thermal Stability
4.5.3. Optimum pH and pH Stability
4.5.4. Effect of Metal Ions and Chemical Reagents on Recombinant Enzymes
4.5.5. Effect of Glucose Concentration on Enzyme Activity
4.5.6. Determination of Substrate Specificity and Kinetic Parameters
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tiwari, R.; Nain, L.; Labrou, N.E.; Shukla, P. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: A review. Crit. Rev. Microbiol. 2018, 44, 244–257. [Google Scholar] [CrossRef]
- Yin, Y.R.; Sang, P.; Xiao, M.; Xian, W.; Dong, Z.; Liu, L.; Yang, L.; Li, W. Expression and characterization of a cold-adapted, salt- and glucose-tolerant gh1 β -glucosidase obtained from thermobifida halotolerans and its use in sugarcane bagasse hydrolysis. Biomass Conv. 2021, 11, 1245–1253. [Google Scholar] [CrossRef]
- Mafa, M.S.; Pletschke, B.I.; Malgas, S. Defining the frontiers of synergism between cellulolytic enzymes for improved hydrolysis of lignocellulosic feedstocks. Catalysts 2021, 11, 1343. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Sukumaran, R.K.; Larroche, C.; Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013, 127, 500–507. [Google Scholar] [CrossRef]
- Bhatia, Y.; Mishra, S.; Bisaria, V.S. Microbial beta-glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 2002, 22, 375–407. [Google Scholar] [CrossRef]
- Chamoli, S.; Kumar, P.; Navani, N.K.; Verma, A.K. Secretory expression, characterization and docking study of glucose-tolerant beta-glucosidase from b. Subtilis. Int. J. Biol. Macromol. 2016, 85, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Godse, R.; Bawane, H.; Tripathi, J.; Kulkarni, R. Unconventional beta-glucosidases: A promising biocatalyst for industrial biotechnology. Appl. Biochem. Biotechnol. 2021, 193, 2993–3016. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of b-glucosidases. Appl. Microbiol. Biotechnol. 2016, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef] [PubMed]
- Claeyssens, M.; Tilbeurgh, H.V.; Tomme, P.; Wood, T.M.; Mcrae, S.I. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from penicillium pinophilum and trichoderma reesei. Biochem. J. 1989, 261, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Uzcategui, E.; Johansson, G.; Ek, B.; Pettersson, G. The 1,4-β-d-glucan glucanohydrolases from phanerochaete chrysosporium. Re-assessment of their significance in cellulose degradation mechanisms. J. Biotechnol. 1991, 21, 143–159. [Google Scholar] [CrossRef]
- Trinc, A.P.J.; Davies, D.R.; Keith Gulli, M.; Lawrence; Nielsew, B.B.; Rickersi, A.; Theodorou, M.K. Anaerobic fungi in herbivorous animals. Mycol. Res. 1994, 98, 129–152. [Google Scholar] [CrossRef]
- Ndez, L.F.H.; Espinosa, J.C.; Lez, M.F.N.; Briones, A. H-glucosidase activity in a saccharomyces cerevisiae wine strain. Int. J. Food Microbiol. 2003, 80, 171–176. [Google Scholar] [CrossRef]
- Chen, H.L.; Chen, Y.C.; Lu, M.J.; Chang, J.J.; Wang, H.C.; Ke, H.M.; Wang, T.Y.; Ruan, S.K.; Wang, T.Y.; Hung, K.Y.; et al. A highly efficient beta-glucosidase from the buffalo rumen fungus neocallimastix patriciarum w5. Biotechnol. Biofuels 2012, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Geng, A.; Xie, R.; Wang, H.; Sun, J. Characterization of cold adapted and ethanol tolerant β-glucosidase from bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol. Int. J. Biol. Macromol. 2018, 109, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.C.; Wang, Z.J.; Ren, G.H.; Kong, W.; Li, L.; Xie, W.; Liu, Y.H. Engineering a novel glucose-tolerant beta-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol. Biofuels 2015, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Ketudat Cairns, J.R.; Esen, A. Β-glucosidases. Cell Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef]
- Adams, M.W.W. Enzymes and proteins froivi organisms that grow near and above 100 °C. Annu. Rev. Microbiol. 1993, 47, 627–658. [Google Scholar] [CrossRef]
- Schroder, C.; Elleuche, S.; Blank, S.; Antranikian, G. Characterization of a heat-active archaeal beta-glucosidase from a hydrothermal spring metagenome. Enzyme Microb. Technol. 2014, 57, 48–54. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, M.; Xie, F.; Zhang, M.; Zhao, H.; Zhou, T. Engineering thermotoga maritima beta-glucosidase for improved alkyl glycosides synthesis by site-directed mutagenesis. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab031. [Google Scholar] [CrossRef]
- Egorova, K.; Antranikian, G. Industrial relevance of thermophilic archaea ksenia egorova and garabed antranikian. Curr. Opin. Microbiol. 2005, 8, 649–655. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K. Thermostable enzymes as biocatalysts in the biofuel industry. Adv. Appl. Microbiol. 2010, 70, 1–55. [Google Scholar] [CrossRef]
- Kaushal, G.; Rai, A.K.; Singh, S.P. A novel β-glucosidase from a hot-spring metagenome shows elevated thermal stability and tolerance to glucose and ethanol. Enzyme Microb. Technol. 2021, 145, 109764. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pang, Q.; Zhao, L.; Fan, S.; Shi, H. Thermoanaerobacterium thermosaccharolyticum beta-glucosidase: A glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels 2012, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Golaconda, R.H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (cazy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.K.; Gieler, B.A.; Heisler, D.L.; Palisoc, M.M.; Williams, A.J.; Dohnalkova, A.C.; Ming, H.; Yu, T.T.; Dodsworth, J.A.; Li, W.; et al. Kallotenue papyrolyticum gen. Nov., Sp. Nov., A cellulolytic and filamentous thermophile that represents a novel lineage (kallotenuales ord. Nov., Kallotenuaceae fam. Nov.) Within the class chloroflexia. Int. J. Syst. Evol. Microbiol. 2013, 63, 4675. [Google Scholar] [CrossRef]
- Ariaeenejad, S.; Nooshi-Nedamani, S.; Rahban, M.; Kavousi, K.; Pirbalooti, A.G.; Mirghaderi, S.; Mohammadi, M.; Mirzaei, M.; Salekdeh, G.H. A novel high glucose-tolerant beta-glucosidase: Targeted computational approach for metagenomic screening. Front. Bioeng. Biotechnol. 2020, 8, 813. [Google Scholar] [CrossRef]
- Zanoelo, F.F.; Polizeli, M.L.; Terenzi, H.F.; Jorge, J.A. Beta-glucosidase activity from the thermophilic fungus scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol. Lett. 2004, 240, 137–143. [Google Scholar] [CrossRef]
- Da Silva, R.R.; Da Conceição, P.J.P.; de Menezes, C.L.A.; de Oliveira Nascimento, C.E.; Machado Bertelli, M.; Pessoa Júnior, A.; de Souza, G.M.; Da Silva, R.; Gomes, E. Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant β-glucosidase secreted by pichia guilliermondii g1.2. J. Biotechnol. 2019, 294, 73–80. [Google Scholar] [CrossRef]
- Gao, J.; Weng, H.; Xi, Y.; Zhu, D.; Han, S. Purification and characterization of a novel endo-beta-1,4-glucanase from the thermoacidophilic aspergillus terreus. Biotechnol. Lett. 2008, 30, 323–327. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Jiao, R.; Ni, Q.; Wang, Y.; Gao, Q.; Zhang, Y.; Xu, G. Biochemical characterization of a novel glucose-tolerant gh3 β-glucosidase (bgl1973) from leifsonia sp. Zf2019. Appl. Microbiol. Biotechnol. 2022, 106, 5063–5079. [Google Scholar] [CrossRef]
- Benjamin, Y.; Garcia-Aparicio, M.P.; Gorgens, J.F. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane. Biotechnol. Biofuels 2014, 7, 60. [Google Scholar] [CrossRef]
- Mariano, D.; Leite, C.; Santos, L.; Marins, L.F.; Machado, K.S.; Werhli, A.V.; Lima, L.; de Melo-Minardi, R.C. Characterization of glucose-tolerant beta-glucosidases used in biofuel production under the bioinformatics perspective: A systematic review. Genet. Mol. Res. 2014, 16, 10–4238. [Google Scholar] [CrossRef]
- Salgado, J.; Meleiro, L.P.; Carli, S.; Ward, R.J. Glucose tolerant and glucose stimulated beta-glucosidases—A review. Bioresour. Technol. 2018, 267, 704–713. [Google Scholar] [CrossRef]
- Krogh, K.B.; Harris, P.V.; Olsen, C.L.; Johansen, K.S.; Hojer-Pedersen, J.; Borjesson, J.; Olsson, L. Characterization and kinetic analysis of a thermostable gh3 beta-glucosidase from penicillium brasilianum. Appl. Microbiol. Biotechnol. 2010, 86, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Teugjas, H.; Valjamae, P. Selecting beta-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 2013, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, X.; Li, Z.; Du, C.; Wang, J.; Li, S. Overexpression and characterization of a glucose-tolerant β -glucosidase from t. Aotearoense with high specific activity for cellobiose. Appl. Microbiol. Biotechnol. 2015, 99, 8903–8915. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Datta, S. Beta-glucosidase from the hyperthermophilic archaeon thermococcus sp. Is a salt-tolerant enzyme that is stabilized by its reaction product glucose. Appl. Microbiol. Biotechnol. 2016, 100, 8399–8409. [Google Scholar] [CrossRef]
- Dadwal, A.; Sharma, S.; Satyanarayana, T. Biochemical characteristics of myceliophthora thermophila recombinant beta-glucosidase (mtbgl3c) applicable in cellulose bioconversion. Prep. Biochem. Biotechnol. 2023, 53, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jiang, Y.; Fan, X.; Liu, Y. Molecular cloning and characterization of a novel b-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour. Technol. 2012, 123, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Florindo, R.N.; Souza, V.P.; Mutti, H.S.; Margarido, L.; Camilo, C.; Marana, S.R.; Polikarpov, I.; Nascimento, A.S. Structural and biochemical data of trichoderma harzianum gh1 beta-glucosidases. Data Brief. 2017, 15, 340–343. [Google Scholar] [CrossRef]
- Liew, K.J.; Lim, L.; Woo, H.Y.; Chan, K.G.; Shamsir, M.S.; Goh, K.M. Purification and characterization of a novel gh1 beta-glucosidase from jeotgalibacillus malaysiensis. Int. J. Biol. Macromol. 2018, 115, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.R.; Li, X.W.; Long, C.; Li, L.; Hang, Y.; Rao, M.; Yan, X.; Liu, Q.; Sang, P.; Li, W.; et al. Characterization of a gh10 extremely thermophilic xylanase from the metagenome of hot spring for prebiotic production. Sci. Rep. 2023, 13, 16053. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Wu, P.; Wu, X.C.; Zhu, Q.R.; Zhu, Q.; Zheng, H.Z.; Zhu, D.; Lv, Z.H.; Yin, Y.R. Characterization of a thermophilic and inhibitor-tolerant gh1 β-glucosidase present in a hot spring. Water 2023, 15, 3389. [Google Scholar] [CrossRef]
- Waterborg, J.H. The lowry method for protein quantitation. In The Protein Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Yin, Y.R.; Sang, P.; Xian, W.D.; Li, X.; Jiao, J.Y.; Liu, L.; Hozzein, W.N.; Xiao, M.; Li, W.J. Expression and characteristics of two glucose-tolerant gh1 beta-glucosidases from actinomadura amylolytica yim 77502(t) for promoting cellulose degradation. Front. Microbiol. 2018, 9, 3149. [Google Scholar] [CrossRef]
- Harnpicharnchai, P.; Champreda, V.; Sornlake, W.; Eurwilaichitr, L. A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., With a possible use for biomass conversion to sugars. Protein Expr. Purif. 2009, 67, 61–69. [Google Scholar] [CrossRef]
- Huang, C.; Feng, Y.; Patel, G.; Xu, X.; Qian, J.; Liu, Q.; Kai, G. Production, immobilization and characterization of beta-glucosidase for application in cellulose degradation from a novel aspergillus versicolor. Int. J. Biol. Macromol. 2021, 177, 437–446. [Google Scholar] [CrossRef]
- Cai, L.N.; Xu, S.N.; Lu, T.; Lin, D.Q.; Yao, S.J. Directed expression of halophilic and acidophilic beta-glucosidases by introducing homologous constitutive expression cassettes in marine aspergillus niger. J. Biotechnol. 2019, 292, 12–22. [Google Scholar] [CrossRef]
- Sun, N.; Liu, X.; Zhang, B.; Wang, X.; Na, W.; Tan, Z.; Li, X.; Guan, Q. Characterization of a novel recombinant halophilic beta-glucosidase of trichoderma harzianum derived from hainan mangrove. BMC Microbiol. 2022, 22, 185. [Google Scholar] [CrossRef]
- Senba, H.; Saito, D.; Kimura, Y.; Tanaka, S.; Doi, M.; Takenaka, S. Heterologous expression and characterization of salt-tolerant beta-glucosidase from xerophilic aspergillus chevalieri for hydrolysis of marine biomass. Arch. Microbiol. 2023, 205, 310. [Google Scholar] [CrossRef] [PubMed]
Relative Activity | ||
---|---|---|
Effectors | Effector Concentration (mM) | |
1 mM | 10 mM | |
Control | 100.0 ± 0.6 | 100.0 ± 0.6 |
K+ | 101.2 ± 1.9 | 99.1 ± 3.5 |
Mg2+ | 89.6 ± 1.7 ** | 88.4 ± 0.2 ** |
Fe3+ | 88.9 ± 3.3 ** | 9.4 ± 1.4 ** |
Ca2+ | 100.9 ± 2.0 | 94.3 ± 4.2 * |
Zn2+ | 92.1 ± 2.1 ** | 92.2 ± 0.7 ** |
Co2+ | 99.3 ± 2.5 | 0 ** |
Cu2+ | 106.4 ± 2.1 ** | 98.9 ± 1.0 |
Ag+ | 88.5 ± 1.1 ** | 0 ** |
Mn2+ | 85.1 ± 0.6 ** | 21.5 ± 1.8 ** |
Pb2+ | 86.9 ± 4.7 ** | 67.1 ± 4.4** |
Ni2+ | 107.0 ± 1.8 ** | 86.8 ± 2.4 ** |
Effector concentration (W/V) | ||
0.1% | 1% | |
EDTA | 103.8 ± 3.2 | 95.8 ± 4.0 |
Tween-80 | 86.0 ± 0.9 ** | 84.4 ± 1.5 ** |
SDS | 0.6 ± 0.1 ** | 0 ** |
DTT | 90.6 ± 5.7 ** | 87.0 ± 1.6 ** |
Substrate | Special Activity (U/mg) |
---|---|
cellobiose | 7.0 ± 2.1 |
α-lactose | 13.7 ± 1.5 |
pNPG | 24.1 ± 10.8 |
sucrose | 0 |
corn cob xylan | 0 |
avicel | 0 |
wheat bran xylan | 0 |
CMC | 0 |
bagasse xylan | 0 |
beechwood xylan | 0 |
Source of Enzyme | Optimum pH | Optimum Temperature °C | Thermostability | Km (mM) Cellobiose | Glucose Tolerance | References |
---|---|---|---|---|---|---|
LQ-BG5 | 4.6 | 55 | 89% residual activity after 10 h incubation at 50 °C | 3.11 | 69% relative activity at 2 M | This study |
Thermoanaerobacterium thermosaccharolyticum DSM 571 | 6.4 | 70 | 80% residual activity after 2 h incubation at 60 °C | 7.9 | 30% relative activity at 1 M | [24] |
Shenzhen Mangrove Reserve metagenomic | 6 | 40 | 20% residual activity after 30 min incubation at 45 °C | ND | 70% relative activity at 3.6 M | [40] |
Trichoderma harzianum | 6 | 40 | CD thermal-induced unfolding, Tm = 49 °C | 1.22 | 30% relative activity at 0.8 M | [41] |
B. subtilis RA10 | 5 | 50 | 68.32% residual activity after 48 h incubation at 50 °C | ND | 70% relative activity at 1 M | [1] |
Meyerozyma guilliermondii | 3.5–5.5 | 55 | 70% residual activity after 80 min of incubation at 55 °C | ND | 40% relative activity at 1 M | [29] |
Thermococcus sp. | 5.5–6.5 | 78 | 50% residual activity after 55 min incubation at 78 °C | 16.48 | 100% relative activity at 4 M | [38] |
Jeotgalibacillus malaysiensis | 7 | 65 | 50% residual activity after 35 min incubation at 65 °C | ND | 80% relative activity at 2.5 M | [42] |
Leifsonia sp. ZF2019 (Bgl1973) | 7 | 50 | 80% residual activity after 1 h incubation at 40 °C | ND | 83% relative activity at 1 M | [31] |
Hot spring metagenomic | 5 | 70 | 50% residual activity after 32 h incubation at 60 °C | 16.55 | 40% relative activity at 5 M | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Huang, Y.; Yang, Z.; Wu, X.; Zhu, Q.; Zheng, H.; Zhu, D.; Lv, Z.; Yin, Y. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules 2024, 29, 1017. https://doi.org/10.3390/molecules29051017
Zhu Q, Huang Y, Yang Z, Wu X, Zhu Q, Zheng H, Zhu D, Lv Z, Yin Y. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules. 2024; 29(5):1017. https://doi.org/10.3390/molecules29051017
Chicago/Turabian StyleZhu, Qian, Yuying Huang, Zhengfeng Yang, Xingci Wu, Qianru Zhu, Hongzhao Zheng, Dan Zhu, Zhihua Lv, and Yirui Yin. 2024. "A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring" Molecules 29, no. 5: 1017. https://doi.org/10.3390/molecules29051017
APA StyleZhu, Q., Huang, Y., Yang, Z., Wu, X., Zhu, Q., Zheng, H., Zhu, D., Lv, Z., & Yin, Y. (2024). A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules, 29(5), 1017. https://doi.org/10.3390/molecules29051017