Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors
Abstract
:1. Introduction
2. Design Strategy of the Photoswitchable Inhibitor and Its Regulation Mechanism
3. Photoregulating Activity of Enzymes
3.1. Trans-On Inhibitors
3.2. Cis-On Inhibitors
4. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, J.I.; Deng, Q.; Vendrell, M. Near-infrared fluorescent probes for the detection of cancer-associated proteases. ACS Chem. Biol. 2021, 16, 1304–1317. [Google Scholar] [CrossRef]
- Muir, R.K.; Guerra, M.; Bogyo, M.M. Activity-based diagnostics: Recent advances in the development of probes for use with diverse detection modalities. ACS Chem. Biol. 2022, 17, 281–291. [Google Scholar] [CrossRef]
- Zhang, J.; Chai, X.; He, X.-P.; Kim, H.-J.; Yoon, J.; Tian, H. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 2019, 48, 683–722. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S. Disease proteomics. Nature 2003, 422, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Juvekar, V.; Lee, H.W.; Kim, H.M. Two-photon fluorescent probes for detecting enzyme activities in live tissues. ACS Appl. Bio Mater. 2021, 4, 2957–2973. [Google Scholar] [CrossRef]
- Frank, J.A.; Yushchenko, D.A.; Hodson, D.J.; Lipstein, N.; Nagpal, J.; Rutter, G.A.; Rhee, J.-S.; Gottschalk, A.; Brose, N.; Schultz, C.; et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 2016, 12, 755–762. [Google Scholar] [CrossRef]
- Albert, L.; Xu, J.; Wan, R.; Srinivasan, V.; Dou, Y.; Vázquez, O. Controlled inhibition of methyltransferases using photoswitchable peptidomimetics: Towards an epigenetic regulation of leukemia. Chem. Sci. 2017, 8, 4612–4618. [Google Scholar] [CrossRef]
- DuBay, K.H.; Iwan, K.; Osorio-Planes, L.; Geissler, P.L.; Groll, M.; Trauner, D.; Broichhagen, J. A predictive approach for the optical control of carbonic anhydrase II activity. ACS Chem. Biol. 2018, 13, 793–800. [Google Scholar] [CrossRef]
- Parks, F.C.; Liu, Y.; Debnath, S.; Stutsman, S.R.; Raghavachari, K.; Flood, A.H. Allosteric control of photofoldamers for selecting between anion regulation and double-to-single helix switching. J. Am. Chem. Soc. 2018, 140, 17711–17723. [Google Scholar] [CrossRef]
- Mogaki, R.; Okuro, K.; Aida, T. Adhesive photoswitch: Selective photochemical modulation of enzymes under physiological conditions. J. Am. Chem. Soc. 2017, 29, 10072–10078. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zheng, G.; Xue, D.; Zhao, S.; Li, F.; Zhou, F.; Zhao, F.; Xie, L.; Tian, C.; Hua, T.; et al. Rational remodeling of atypical scaffolds for the design of photoswitchable cannabinoid receptor tools. J. Med. Chem. 2021, 64, 13752–13765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Timm, K.A.; Arndt, K.M.; Woolley, G.A. Photocontrol of coiled-coil proteins in living cells. Angew. Chem. Int. Ed. 2010, 49, 3943–3946. [Google Scholar] [CrossRef]
- Mayer, G.; Heckel, A. Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. 2006, 45, 4900–4921. [Google Scholar] [CrossRef]
- Szymański, W.; Beierle, J.M.; Kistemaker, H.A.V.; Velema, W.A.; Feringa, B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 2013, 113, 6114–6178. [Google Scholar] [CrossRef]
- Kounde, C.S.; Tate, E.W. Photoactive bifunctional degraders: Precision tools to regulate protein stability. J. Med. Chem. 2020, 63, 15483–15493. [Google Scholar] [CrossRef]
- Velema, W.A.; Szymanski, W.; Feringa, B.L. Photopharmacology: Beyond proof of principle. J. Am. Chem. Soc. 2014, 136, 2178–2191. [Google Scholar] [CrossRef]
- Fleming, C.L.; Grøtli, M.; Andreasson, J. On-command regulation of kinase activity using photonic stimuli. ChemPhotoChem 2019, 3, 318–326. [Google Scholar] [CrossRef]
- Morstein, J.; Hill, R.Z.; Novak, A.J.E.; Feng, S.; Norman, D.D.; Donthamsetti, P.C.; Frank, J.A.; Harayama, T.; Williams, B.M.; Parrill, A.L.; et al. Optical control of sphingosine-1-phosphate formation and function. Nat. Chem. Biol. 2019, 15, 623–631. [Google Scholar] [CrossRef]
- Leippe, P.; Koehler Leman, J.; Traune, D. Specificity and speed: Tethered photopharmacology. Biochemistry 2017, 56, 5214–5220. [Google Scholar] [CrossRef]
- Lichtenegger, M.; Tiapko, O.; Svobodova, B.; Stockner, T.; Glasnov, T.N.; Schreibmayer, W.; Platzer, D.; de la Cruz, G.G.; Krenn, S.; Schober, R.; et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 2018, 14, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Soriano, J.; Carmen Galan, M. Photoresponsive control of G-quadruplex DNA systems. JACS Au 2021, 1, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, A.S.; Liu, Q.; Smith, S.J.; Willem de Vries, J.; Kistemaker, J.C.M.; de Vries, A.H.; Faustino, I.; Meng, Z.; Szymanski, W.; Herrmann, A.; et al. Photoswitching of DNA hybridization using a molecular motor. J. Am. Chem. Soc. 2018, 140, 5069–5076. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L. Photoregulation between small DNAs and reversible photochromic molecules. Biomater. Sci. 2019, 7, 4944–4962. [Google Scholar] [CrossRef] [PubMed]
- Berdnikova, D.V. Photoswitches for controllable RNA binding: A future approach in the RNA-targeting therapy. Chem. Commun. 2021, 57, 10819–10826. [Google Scholar] [CrossRef]
- Zhang, F.; Zarrine-Afsar, A.; Sameer Al-Abdul-Wahid, M.; Scott Prosser, R.; Davidson, A.R.; Andrew Woolley, G. Structure-based approach to the photocontrol of protein folding. J. Am. Chem. Soc. 2009, 131, 2283–2289. [Google Scholar] [CrossRef]
- Beharry, A.A.; Chen, T.; Sameer Al-Abdul-Wahid, M.; Samanta, S.; Davidov, K.; Sadovski, O.; Ali, A.M.; Chen, S.B.; Scott Prosser, R.; Sun Chan, H.; et al. Quantitative analysis of the effects of photoswitchable distance constraints on the structure of a globular protein. Biochemistry 2012, 51, 6421–6431. [Google Scholar] [CrossRef]
- Preuke, N.; Moormann, W.; Bamberg, K.; Lipfert, M.; Herges, R.; Sonnichsen, F.D. Visible-light-driven photocontrol of the Trp-cage protein fold by a diazocine cross-linker. Org. Biomol. Chem. 2020, 18, 2650–2660. [Google Scholar] [CrossRef]
- Zhang, Y.; Erdmann, F.; Fischer, G. Augmented photoswitching modulates immune signaling. Nat. Chem. Biol. 2009, 5, 724–726. [Google Scholar] [CrossRef]
- Velema, W.A.; Hansen, M.J.; Lerch, M.M.; Driessen, A.J.M.; Szymanski, W.; Feringa, B.L. Ciprofloxacin–photoswitch conjugates: A facile strategy for photopharmacology. Bioconjug. Chem. 2015, 26, 2592–2597. [Google Scholar] [CrossRef]
- Blanco, B.; Palasis, K.A.; Adwal, A.; Callen, D.F.; Abell, A.D. Azobenzene-containing photoswitchable proteasome inhibitors with selective activity and cellular toxicity. Bioorg. Med. Chem. 2017, 25, 5050–5054. [Google Scholar] [CrossRef] [PubMed]
- Rennhack, A.; Grahn, E.; Benjamin Kaupp, U.; Berger, T.K. Photocontrol of the Hv1 proton channel. ACS Chem. Biol. 2017, 12, 2952–2957. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-C.; Kramer, R.H. Light-switchable ion channels and receptors for optogenetic interrogation of neuronal signaling. Bioconjug. Chem. 2018, 29, 861–869. [Google Scholar] [CrossRef]
- Wang, W.-Z.; Huang, L.-B.; Zheng, S.-P.; Moulin, E.; Gavat, O.; Barboiu, M.; Giuseppone, N. Light-driven molecular motors boost the selective transport of alkali metal ions through phospholipid bilayers. J. Am. Chem. Soc. 2021, 143, 15653–15660. [Google Scholar] [CrossRef]
- Mostyn, S.N.; Sarker, S.; Muthuraman, P.; Raja, A.; Shimmon, S.; Rawling, T.; Cioffi, C.L.; Vandenberg, R.J. Photoswitchable ORG25543 congener enables optical control of glycine transporter 2. ACS Chem. Neurosci. 2020, 11, 1250–1258. [Google Scholar] [CrossRef]
- Cheng, B.; Shchepakin, D.; Kavanaugh, M.P.; Trauner, D. Photoswitchable inhibitor of a glutamate transporter. ACS Chem. Neurosci. 2017, 8, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Morstein, J.; Ladefoged, L.K.; Maesen, J.B.; Schiott, B.; Sinning, S.; Trauner, D. A photoswitchable inhibitor of the human serotonin transporter. ACS Chem. Neurosci. 2020, 11, 1231–1237. [Google Scholar] [CrossRef]
- Westphal, M.V.; Schafroth, M.A.; Sarott, R.C.; Imhof, M.A.; Bold, C.P.; Leippe, P.; Dhopeshwarkar, A.; Grandner, J.M.; Katritch, V.; Mackie, K.; et al. Synthesis of photoswitchable Δ9-tetrahydrocannabinol derivatives enables optical control of cannabinoid receptor 1 signaling. J. Am. Chem. Soc. 2017, 139, 18206–18212. [Google Scholar] [CrossRef]
- Agnetta, L.; Kauk, M.; Canizal, M.C.A.; Messerer, R.; Holzgrabe, U.; Hoffmann, C.; Decker, M. A photoswitchable dualsteric ligand controlling receptor efficacy. Angew. Chem. Int. Ed. 2017, 56, 7282–7287. [Google Scholar] [CrossRef]
- Carroll, E.C.; Berlin, S.; Levitz, J.; Kienzler, M.A.; Yuan, Z.; Madsen, D.; Larsen, D.S.; Isacoff, E.Y. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc. Natl. Acad. Sci. USA 2015, 112, E776–E785. [Google Scholar] [CrossRef]
- Dai, X.; Dong, X.; Liu, Z.; Liu, G.; Liu, Y. Controllable singlet oxygen generation in water based on cyclodextrin secondary assembly for targeted photodynamic therapy. Biomacromolecules 2020, 21, 5369–5379. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Chandrasekaran, V.; Stamer, I.; Thygesen, M.B.; Terfort, A.; Lindhorst, T.K. Switching of bacterial adhesion to a glycosylated surface by reversible reorientation of the carbohydrate ligand. Angew. Chem. Int. Ed. 2014, 53, 14583–14586. [Google Scholar] [CrossRef] [PubMed]
- Möckl, L.; Müller, A.; Bräuchle, C.; Lindhorst, T.K. Switching first contact: Photocontrol of E. coli adhesion to human cells. Chem. Commun. 2016, 52, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Prestel, A.; Möller, H.M. Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides. Chem. Commun. 2016, 52, 701–704. [Google Scholar] [CrossRef]
- Broichhagen, J.; Frank, J.A.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 2015, 48, 1947–1960. [Google Scholar] [CrossRef]
- Paoletti, P.; Ellis-Davies, G.C.R.; Mourot, A. Optical control of neuronal ion channels and receptors. Nat. Rev. Neurosci. 2019, 20, 514–532. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrases: Novel therapeuticapplications for inhibitors and activators. Nat. Rev. Drug Discovery 2008, 7, 168–181. [Google Scholar] [CrossRef]
- Aggarwal, K.; Banik, M.; Medellin, B.; Que, E.L. In situ photoregulation of carbonic anhydrase activity using azobenzenesulfonamides. Biochemistry 2019, 58, 48–53. [Google Scholar] [CrossRef]
- Bourais, I.; Maliki, S.; Mohammadi, H.; Amine, A. Investigation of sulfonamides inhibition of carbonic anhydrase enzyme using multiphotometric and electrochemical techniques. Enzyme Microb. Technol. 2017, 96, 23–29. [Google Scholar] [CrossRef]
- Del Prete, S.; De Luca, V.; Scozzafava, A.; Carginale, V.; Supuran, C.T.; Capasso, C. Biochemical properties of a new alpha-carbonic anhydrase from the human pathogenic bacterium, Vibrio cholera. J. Enzyme Inhib. Med. Chem. 2014, 29, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, K.; Kuka, T.P.; Banik, M.; Medellin, B.P.; Ngo, C.Q.; Xie, D.; Fernandes, Y.; Dangerfield, T.L.; Ye, E.; Bouley, B.; et al. Visible light mediated bidirectional control over carbonic anhydrase activity in cells and in vivo using azobenzenesulfonamides. J. Am. Chem. Soc. 2020, 142, 14522–14531. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Rasmussen, J.K.; Boedtkjer, E. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3– fluctuations. J. Cereb. Blood Flow Metab. 2018, 38, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Mizumori, M.; Meyerowitz, J.; Takeuchi, T.; Lim, S.; Lee, P.; Supuran, C.T.; Guth, P.H.; Engel, E.; Kaunitz, J.D.; Akiba, Y. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa. J. Physiol. 2006, 573, 827–842. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fujiwara, S.; Miyagi, H.; Nakamura, N.; Shiga, Y.; Ohta, T.; Tsuzuki, M. Carbonic anhydrase inhibitors induce developmental toxicity during zebrafish embryogenesis, especially in the inner ear. Mar. Biotechnol. 2017, 19, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Aspatwar, A.; Becker, H.M.; Parvathaneni, N.K.; Hammaren, M.; Svorjova, A.; Barker, H.; Supuran, C.T.; Dubois, L.; Lambin, P.; Parikka, M.; et al. Nitroimidazole-based inhibitors DTP338 and DTP348 are safe for zebrafish embryos and efficiently inhibit the activity of human CA IX in Xenopusoocytes. J. Enzyme Inhib. Med. Chem. 2018, 33, 1064–1073. [Google Scholar] [CrossRef]
- Nusrat Mafy, N.; Matsuo, K.; Hiruma, S.; Uehara, R.; Tamaoki, N. Photoswitchable CENP-E inhibitor enabling the dynamic control of chromosome movement and mitotic progression. J. Am. Chem. Soc. 2020, 142, 1763–1767. [Google Scholar] [CrossRef]
- Wood, K.W.; Lad, L.; Luo, L.; Qian, X.; Knight, S.D.; Nevins, N.; Brejc, K.; Sutton, D.; Gilmartin, A.G.; Chua, P.R.; et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA 2010, 107, 5839–5844. [Google Scholar] [CrossRef]
- Qian, X.; McDonald, A.; Zhou, H.-J.; Adams, N.D.; Parrish, C.A.; Duffy, K.J.; Fitch, D.M.; Tedesco, R.; Ashcraft, L.W.; Yao, B.; et al. Discovery of the first potent and selective inhibitor of centromere-associated protein E: GSK923295. ACS Med. Chem. Lett. 2010, 1, 30–34. [Google Scholar] [CrossRef]
- Chung, V.; Heath, E.I.; Schelman, W.R.; Johnson, B.M.; Kirby, L.C.; Lynch, K.M.; Botbyl, J.D.; Lampkin, T.A.; Holen, K.D. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother. Pharmacol. 2012, 69, 733–741. [Google Scholar] [CrossRef]
- Wood, K.W.; Sakowicz, R.; Goldstein, L.S.; Cleveland, D.W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 1997, 91, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, L.M. RET revisited: Expanding the oncogenic portfolio. Nat. Rev. Cancer 2014, 14, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gao, C.; Haversen, L.; Lundback, T.; Andreasson, J.; Grøtli, M. Design and development of a photoswitchable DFG-out kinase inhibitor. Chem. Commun. 2021, 57, 10043–10046. [Google Scholar] [CrossRef]
- Mologni, L.; Redaelli, S.; Morandi, A.; Plaza-Menacho, I.; Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell. Endocrinol. 2013, 377, 1–6. [Google Scholar] [CrossRef]
- Dwyer, B.G.; Wang, C.; Abegg, D.; Racioppo, B.; Qiu, N.; Zhao, Z.; Pechalrieu, D.; Shuster, A.; Hoch, D.G.; Adibekian, A. Chemoproteomics-enabled de novo discovery of photoswitchable carboxylesterase inhibitors for optically controlled drug metabolism. Angew. Chem. Int. Ed. 2021, 60, 3071–3079. [Google Scholar] [CrossRef] [PubMed]
- Adibekian, A.; Martin, B.R.; Chang, J.W.; Hsu, K.L.; Tsuboi, K.; Bachovchin, D.A.; Speers, A.E.; Brown, S.J.; Spicer, T.; Fernandez-Vega, V.; et al. Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J. Am. Chem. Soc. 2012, 134, 10345–10348. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Abegg, D.; Dwyer, B.G.; Adibekian, A. Discovery and evaluation of new activity-based probes for serine hydrolases. ChemBioChem 2019, 20, 2212–2216. [Google Scholar] [CrossRef]
- Fukami, T.; Kariya, M.; Kurokawa, T.; Iida, A.; Nakajima, M. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Eur. J. Pharm. Sci. 2015, 78, 47–53. [Google Scholar] [CrossRef]
- Coffey, E.T. Nuclear and cytosolic JNK signalling in neurons. Nat. Rev. Neurosci. 2014, 15, 285–299. [Google Scholar] [CrossRef]
- Reynders, M.; Chaikuad, A.; Berger, B.-T.; Bauer, K.; Koch, P.; Laufer, S.; Knapp, S.; Trauner, D. Controlling the covalent reactivity of a kinase inhibitor with light. Angew. Chem. Int. Ed. 2021, 60, 20178–20183. [Google Scholar] [CrossRef] [PubMed]
- Muth, F.; El-Gokha, A.; Ansideri, F.; Eitel, M.; Döring, E.; Sievers-Engler, A.; Lange, A.; Boeckler, F.M.; Lämmerhofer, M.; Koch, P.; et al. Tri- and tetrasubstituted pyridinylimidazoles as covalent inhibitors of c-Jun N-terminal kinase 3. J. Med. Chem. 2017, 60, 594–607. [Google Scholar] [CrossRef]
- Fuhrmann, J.; Clancy, K.W.; Thompson, P.R. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 2015, 115, 5413–5461. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Parelkar, S.S.; Nagar, M.; Thompson, P.R. Photochemical control of protein arginine deiminase (PAD) activity. ACS Chem. Biol. 2018, 13, 1057–1065. [Google Scholar] [CrossRef]
- Knight, J.S.; Subramanian, V.; O’Dell, A.A.; Yalavarthi, S.; Zhao, W.; Smith, C.K.; Hodgin, J.B.; Thompson, P.R.; Kaplan, M.J. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 2015, 74, 2199–2206. [Google Scholar] [CrossRef]
- Kawalkowska, J.; Quirke, A.-M.; Ghari, F.; Davis, S.; Subramanian, V.; Thompson, P.R.; Williams, R.O.; Fischer, R.; La Thangue, N.B.; Venables, P.J. Abrogation of collageninduced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Sci. Rep. 2016, 6, 26430. [Google Scholar] [CrossRef]
- Lewallen, D.M.; Bicker, K.L.; Subramanian, V.; Clancy, K.W.; Slade, D.J.; Martell, J.; Dreyton, C.J.; Sokolove, J.; Weerapana, E.; Thompson, P.R. Chemical proteomic platform to identify citrullinated proteins. ACS Chem. Biol. 2015, 10, 2520–2528. [Google Scholar] [CrossRef]
- Lewallen, D.M.; Bicker, K.L.; Madoux, F.; Chase, P.; Anguish, L.; Coonrod, S.; Hodder, P.; Thompson, P.R. A FluoPol-ABPP PAD2 high-throughput screen identifies the first calcium site inhibitor targeting the PADs. ACS Chem. Biol. 2014, 9, 913–921. [Google Scholar] [CrossRef]
- Scheiner, M.; Sink, A.; Spatz, P.; Endres, E.; Decker, M. Photopharmacology on acetylcholinesterase: Novel photoswitchable inhibitors with improved pharmacological profiles. ChemPhotoChem 2021, 5, 149–159. [Google Scholar] [CrossRef]
- Broichhagen, J.; Jurastow, I.; Iwan, K.; Kummer, W.; Trauner, D. Optical control of acetylcholinesterase with a tacrine switch. Angew. Chem. Int. Ed. 2014, 53, 7657–7660. [Google Scholar] [CrossRef]
- Chen, X.; Wehle, S.; Kuzmanovic, N.; Merget, B.; Holzgrabe, U.; König, B.; Sotriffer, C.A.; Decker, M. Acetylcholinesterase inhibitors with photoswitchable inhibition of β-amyloid aggregation. ACS Chem. Neurosci. 2014, 5, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, E.H.; Brumshtein, B.; Greenblatt, H.M.; Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y.P.; Silman, I.; Sussman, J.L. Complexes of Alkylene-linked Tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis (5)-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem. 2006, 49, 5491–5500. [Google Scholar] [CrossRef]
- Scheiner, M.; Sink, A.; Hoffmann, M.; Vrigneau, C.; Endres, E.; Carles, A.; sotriffer, C.; Maurice, T.; Decker, M. Photoswitchable pseudoirreversible butyrylcholinesterase inhibitors allow optical control of inhibition in vitro and enable restoration of cognition in an Alzheimer’s disease mouse model upon irradiation. J. Am. Chem. Soc. 2022, 144, 3279–3284. [Google Scholar] [CrossRef] [PubMed]
- Darras, F.H.; Kling, B.; Heilmann, J.; Decker, M. Neuroprotective tri- and tetracyclic BChE inhibitors releasing reversible inhibitors upon carbamate transfer. ACS Med. Chem. Lett. 2012, 3, 914–919. [Google Scholar] [CrossRef]
- Sawatzky, E.; Al-Momani, E.; Kobayashi, R.; Higuchi, T.; Samnick, S.; Decker, M. A novel way to radiolabel human butyrylcholinesterase for positron emission tomography through irreversible transfer of the radiolabeled moiety. ChemMedChem 2016, 11, 1540–1550. [Google Scholar] [CrossRef]
- Hoffmann, M.; Stiller, C.; Endres, E.; Scheiner, M.; Gunesch, S.; Sotriffer, C.; Maurice, T.; Decker, M. Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer’s disease mouse model. J. Med. Chem. 2019, 62, 9116–9140. [Google Scholar] [CrossRef] [PubMed]
- Matera, C.; Gomila, A.M.J.; Camarero, N.; Libergoli, M.; Soler, C.; Gorostiza, P. Photoswitchable antimetabolite for targeted photoactivated chemotherapy. J. Am. Chem. Soc. 2018, 140, 15764–15773. [Google Scholar] [CrossRef]
- Miller, L.W.; Sable, J.; Goelet, P.; Sheetz, M.P.; Cornish, V.W. Methotrexate conjugates: A molecular in vivo protein tag. Angew. Chem. Int. Ed. 2004, 43, 1672–1675. [Google Scholar] [CrossRef]
- Miller, L.W.; Cai, Y.; Sheetz, M.P.; Cornish, V.W. In vivo protein labeling with trimethoprim conjugates: A flexible chemical tag. Nat. Methods 2005, 2, 255–257. [Google Scholar] [CrossRef]
- Mashita, T.; Kowada, T.; Takahashi, H.; Matsui, T.; Mizukami, S. Light-wavelength-based quantitative control of dihydrofolate reductase activity by using a photochromic isostere of an inhibitor. ChemBioChem 2019, 20, 1382–1386. [Google Scholar] [CrossRef]
- Kobauri, P.; Galenkamp, N.S.; Schulte, A.M.; de Vries, J.; Simeth, N.A.; Maglia, G.; Thallmair, S.; Kolarski, D.; Szymanski, W.; Feringa, B.L. Hypothesis-driven, structure-based design in photopharmacology: The case of eDHFR inhibitors. J. Med. Chem. 2022, 65, 4798–4817. [Google Scholar] [CrossRef] [PubMed]
- Crellin, E.; Mansfield, K.E.; Leyrat, C.; Nitsch, D.; Douglas, I.J.; Root, A.; Williamson, E.; Smeeth, L.; Tomlinson, L.A. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: Cohort study. BMJ 2018, 360, k341. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.C.; Wan, Q.; Ahmad, M.F.; Langan, P.; Dealwis, C.G. X-Ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design. J. Struct. Biol. 2009, 166, 162–171. [Google Scholar] [CrossRef]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, S.; Lin, S.; Ji, M.; Du, T.; Chen, X.; Xu, H. Discovery of a novel photoswitchable PI3K inhibitor toward optically-controlled anticancer activity. Bioorg. Med. Chem. 2022, 72, 116975. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Jin, J.; Liu, Y.; Tian, H.; Zhang, Y.; Fu, R.; Zhang, J.; Wang, M.; Du, T.; Ji, M.; et al. Discovery of 4-Methylquinazoline Based PI3K Inhibitors for the Potential Treatment of Idiopathic Pulmonary Fibrosis. J. Med. Chem. 2019, 62, 8873–8879. [Google Scholar] [CrossRef]
- Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; et al. Discovery and optimization of 2-amino-4-methylquinazoline derivatives as highly potent phosphatidylinositol 3-kinase inhibitors for cancer treatment. J. Med. Chem. 2018, 61, 6087–6109. [Google Scholar] [CrossRef]
- Shchelik, I.S.; Tomio, A.; Gademann, K. Design, synthesis, and biological evaluation of light-activated antibiotics. ACS Infect. Dis. 2021, 7, 681–692. [Google Scholar] [CrossRef]
- Weston, C.E.; Krämer, A.; Colin, F.; Yildiz, Ö.; Baud, M.G.J.; Meyer-Almes, F.-J.; Fuchter, M.J. Toward photopharmacological antimicrobial chemotherapy using photoswitchable amidohydrolase inhibitors. ACS Infect. Dis. 2017, 3, 152–161. [Google Scholar] [CrossRef]
- Bieth, J.; Vratsanos, S.M.; Wassermann, N.; Erlanger, B.F. Photoregulation of biological activity by photocromic reagents, II. Inhibitors of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1969, 64, 1103–1106. [Google Scholar] [CrossRef]
- Quandt, G.; Höfner, G.; Pabel, J.; Dine, J.; Eder, M.; Wanner, K.T. First photoswitchable neurotransmitter transporter inhibitor: Light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain. J. Med. Chem. 2014, 57, 6809–6821. [Google Scholar] [CrossRef] [PubMed]
- Hüll, K.; Morstein, J.; Trauner, D. In vivo photopharmacology. Chem. Rev. 2018, 118, 10710–10747. [Google Scholar] [CrossRef]
- Ogasawara, S. Duration control of protein expression in vivo by light-mediated reversible activation of translation. ACS Chem. Biol. 2017, 12, 351–356. [Google Scholar] [CrossRef]
- Tochitsky, I.; Kienzler, M.A.; Isacoff, E.; Kramer, R.H. Restoring vision to the blind with chemical photoswitches. Chem. Rev. 2018, 118, 10748–10773. [Google Scholar] [CrossRef] [PubMed]
- Tochitsky, I.; Helft, Z.; Meseguer, V.; Fletcher, R.B.; Vessey, K.A.; Telias, M.; Denlinger, B.; Malis, J.; Fletcher, E.L.; Kramer, R.H. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 2016, 92, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Tochitsky, I.; Trautman, J.; Gallerani, N.; Malis, J.G.; Kramer, R.H. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci. Rep. 2017, 7, 45487. [Google Scholar] [CrossRef]
- Kobauri, P.; Dekker, F.J.; Szymanski, W.; Feringa, B.L. Rational design in photopharmacology with molecular photoswitches. Angew. Chem. Int. Ed. 2023, 62, e202300681. [Google Scholar] [CrossRef]
- Lerch, M.M.; Hansen, M.J.; van Dam, G.M.; Szymanski, W.; Feringa, B.L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 2016, 55, 10978–10999. [Google Scholar] [CrossRef]
- Ozhogin, I.V.; Zolotukhin, P.V.; Makarova, N.I.; Rostovtseva, I.A.; Pugachev, A.D.; Kozlenko, A.S.; Belanova, A.A.; Borodkin, G.S.; Dorogan, I.V.; Metelitsa, A.V. Meta-stable state photoacid containing β-estradiol fragment with photomodulated biological activity and anti-cancer stem cells properties. J. Photochem. Photobiol. B 2024, 257, 112964. [Google Scholar] [CrossRef]
- Lachmann, D.; Lahmy, R.; König, B. Fulgimides as light-activated tools in biological investigations. Eur. J. Org. Chem. 2019, 2019, 5018–5024. [Google Scholar] [CrossRef]
- Wilson, D.; Branda, N.R. Turning “on” and “off” a pyridoxal 5′-phosphate mimic using light. Angew. Chem. 2012, 124, 5527–5530. [Google Scholar] [CrossRef]
- Leistner, A.-L.; Pianowski, Z.L. Smart photochromic materials triggered with visible light. Eur. J. Org. Chem. 2022, 2022, e202101271. [Google Scholar] [CrossRef]
- Kienzler, M.A.; Isacoff, E.Y. Precise modulation of neuronal activity with synthetic photoswitchable ligands. Curr. Opin. Neurobiol. 2017, 45, 202–209. [Google Scholar] [CrossRef]
- Adak, S.; Lal Maity, M.; Bandyopadhyay, S. Photoresponsive small molecule enzyme mimics. ACS Omega 2022, 7, 35361–35370. [Google Scholar] [CrossRef]
- Morstein, J.; Impastato, A.C.; Trauner, D. Photoswitchable lipids. ChemBioChem 2021, 22, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-G.; Chen, P.-G.; Wang, G.; Wu, J.-J.; Zhang, B.-D.; Li, W.-H.; Davis, R.L.; Li, Y.-M. Regulation of immune activation by optical control of TLR1/2 heterodimerization. ChemBioChem 2020, 21, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-H.; Essig, S.; James, J.R.; Lang, K.; Chin, J.W. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat. Chem. 2015, 7, 554–561. [Google Scholar] [CrossRef]
- Velema, W.A.; van der Toorn, M.; Szymanski, W.; Feringa, B.L. Design, synthesis, and inhibitory activity of potent, photoswitchable mast cell activation inhibitors. J. Med. Chem. 2013, 56, 4456–4464. [Google Scholar] [CrossRef]
- Velema, W.A.; van der Berg, J.P.; Hansen, M.J.; Szymanski, W.; Driessen, A.J.M.; Feringa, B.L. Optical control of antibacterial activity. Nat. Chem. 2013, 5, 924–928. [Google Scholar] [CrossRef]
- Schoenberger, M.; Damijonaitis, A.; Zhang, Z.; Nagel, D.; Trauner, D. Development of a new photochromic ion channel blocker via azologization of fomocaine. ACS Chem. Neurosci. 2014, 5, 514–518. [Google Scholar] [CrossRef]
- Morstein, J.; Awale, M.; Reymond, J.L.; Trauner, D. Mapping the azolog space enables the optical control of new biological targets. ACS Cent. Sci. 2019, 5, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Hinnah, K.; Willems, S.; Morstein, J.; Heering, J.; Hartrampf, F.W.W.; Broichhagen, J.; Leippe, P.; Merk, D.; Trauner, D. Photohormones enable optical control of the peroxisome proliferator-activated receptor γ(PPARγ). J. Med. Chem. 2020, 63, 10908–10920. [Google Scholar] [CrossRef] [PubMed]
- Willems, S.; Morstein, J.; Hinnah, K.; Trauner, D.; Merk, D. A photohormone for light-dependent control of PPARα in live cells. J. Med. Chem. 2021, 64, 10393–10402. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Serra, M.; Gascón-Moya, M.; Hirtz, J.J.; Pittolo, S.; Poskanzer, K.E.; Ferrer, E.; Alibés, R.; Busqué, F.; Yuste, R.; Hernando, J.; et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 2014, 136, 8693–8701. [Google Scholar] [CrossRef]
- Jia, S.; Sletten, E.M. Spatiotemporal control of biology: Synthetic photochemistry toolbox with far-red and near-infrared light. ACS Chem. Biol. 2022, 17, 3255–3269. [Google Scholar] [CrossRef]
- Sortino, R.; Cunquero, M.; Castro-Olvera, G.; Gelabert, R.; Moreno, M.; Riefolo, F.; Matera, C.; Fernàndez-Castillo, N.; Agnetta, L.; Decker, M.; et al. Three-photon infrared stimulation of endogenous neuroreceptors in vivo. Angew. Chem. Int. Ed. 2023, 62, e202311181. [Google Scholar] [CrossRef]
- Dong, M.; Babalhavaeji, A.; Collins, C.V.; Jarrah, K.; Sadovski, O.; Dai, Q.; Andrew Woolley, G. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 2017, 139, 13483–13486. [Google Scholar] [CrossRef]
- Samanta, S.; Babalhavaeji, A.; Dong, M.; Woolley, G.A. Photoswitching of ortho-substituted azonium ions by red light in whole blood. Angew. Chem. Int. Ed. 2013, 52, 14127–14130. [Google Scholar] [CrossRef]
- Volaric, J.; Szymanski, W.; Simeth, N.A.; Feringa, B.L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev. 2021, 50, 12377–12449. [Google Scholar] [CrossRef]
- Welleman, I.M.; Hoorens, M.W.H.; Feringa, B.L.; Boersma, H.H.; Szymanski, W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem. Sci. 2020, 11, 11672–11691. [Google Scholar] [CrossRef]
- Fuchter, M.J. On the promise of photopharmacology using photoswitches: A medicinal chemist’s perspective. J. Med. Chem. 2020, 63, 11436–11447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024, 29, 4523. https://doi.org/10.3390/molecules29194523
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules. 2024; 29(19):4523. https://doi.org/10.3390/molecules29194523
Chicago/Turabian StyleChen, Yi. 2024. "Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors" Molecules 29, no. 19: 4523. https://doi.org/10.3390/molecules29194523
APA StyleChen, Y. (2024). Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules, 29(19), 4523. https://doi.org/10.3390/molecules29194523