Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photoinduced HeLa Cell Death
2.2. Photoinduced ROS Generation
2.3. G4 Selective Photoinduced DNA Damage
2.4. Insight of the Photoinduced HeLa Cell Death
2.5. RNA-Seq Analysis of Photoirradiated HeLa Cells
2.6. Cancer-Selective Cell Death
3. Materials and Methods
3.1. Materials
3.2. Cell Culture, tpQCy Treatment, and Photoirradiation
3.3. Cell Viability
3.4. Singlet Oxygen Detection in the Tube
3.5. Fluorescence Microscopy Imaging
3.6. SOSG Staining
3.7. JC-1 Staining
3.8. MitoBright LT Green Staining
3.9. Native Polyacrylamide Gel Electrophoresis
3.10. Detection of Oxidized Guanine
3.11. RNA-Seq on NGS Platforms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambrus, A.; Chen, D.; Dai, J.; Jones, R.A.; Yang, D. Solution Structure of the Biologically Relevant G-Quadruplex Element in the Human c-MYC Promoter. Implications for G-Quadruplex Stabilization. Biochemistry 2005, 44, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Membrino, A.; Cogoi, S.; Pedersen, E.B.; Xodo, L.E. G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy. PLoS ONE 2011, 6, e24421. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Chen, Y.-Q.; Wang, S.-R.; Zhou, X. G-Quadruplex: A Regulator of Gene Expression and Its Chemical Targeting. Chem 2018, 4, 1314–1344. [Google Scholar] [CrossRef]
- Gu, W.; Lin, Z.; Zhao, S.; Wang, G.; Shen, Z.; Liu, W.; Cai, Y.; Wang, K.; Wan, C.C.; Yan, T. Research Progress on G-Quadruplexes in Human Telomeres and Human Telomerase Reverse Transcriptase (hTERT) Promoter. Oxid. Med. Cell. Longev. 2022, 2022, 2905663. [Google Scholar] [CrossRef]
- Koirala, D.; Dhakal, S.; Ashbridge, B.; Sannohe, Y.; Rodriguez, R.; Sugiyama, H.; Balasubramanian, S.; Mao, H. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 2011, 3, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Pennarun, G.; Granotier, C.; Gauthier, L.R.; Gomez, D.; Hoffschir, F.; Mandine, E.; Riou, J.-F.; Mergny, J.-L.; Mailliet, P.; Boussin, F.D. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 2005, 24, 2917–2928. [Google Scholar] [CrossRef]
- Perrone, R.; Butovskaya, E.; Daelemans, D.; Palù, G.; Pannecouque, C.; Richter, S.N. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J. Antimicrob. Chemother. 2014, 69, 3248–3258. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, Y.; Song, B.; Hao, J.; Miao, W.; Jia, G.; Li, C. Cationic Porphyrin-Mediated G-Quadruplex DNA Oxidative Damage: Regulated by the Initial Interplay between DNA and TMPyP4. Biochemistry 2021, 60, 3707–3713. [Google Scholar] [CrossRef]
- Liu, H.; Lv, C.; Ding, B.; Wang, J.; Li, S.; Zhang, Y. Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncol. Lett. 2014, 8, 409–413. [Google Scholar] [CrossRef]
- Ferino, A.; Nicoletto, G.; D’Este, F.; Zorzet, S.; Lago, S.; Richter, S.N.; Tikhomirov, A.; Shchekotikhin, A.; Xodo, L.E. Photodynamic Therapy for ras-Driven Cancers: Targeting G-Quadruplex RNA Structures with Bifunctional Alkyl-Modified Porphyrins. J. Med. Chem. 2020, 63, 1245–1260. [Google Scholar] [CrossRef]
- Beniaminov, A.D.; Novikov, R.A.; Mamaeva, O.K.; Mitkevich, V.A.; Smirnov, I.P.; Livshits, M.A.; Shchyolkina, A.K.; Kaluzhny, D.N. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res. 2016, 44, 10031–10041. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-N.; Shi, S.; Yang, L.; Zhang, M.; Liu, K.-K.; Zhang, L.-N. Water soluble cationic porphyrin TMPipEOPP induced G-quadruplex and double-stranded DNA photocleavage and cell phototoxicity. RSC Adv. 2016, 6, 13080–13087. [Google Scholar] [CrossRef]
- Kawauchi, K.; Sugimoto, W.; Yasui, T.; Murata, K.; Itoh, K.; Takagi, K.; Tsuruoka, T.; Akamatsu, K.; Tateishi-Karimata, H.; Sugimoto, N.; et al. An anionic phthalocyanine decreases NRAS expression by breaking down its RNA G-quadruplex. Nat. Commun. 2018, 9, 2271. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martínez, A.; Hernández, A.; Galiana-Roselló, C.; López-Molina, S.; Ortiz, J.; Sastre-Santos, A.; García-España, E.; González-García, J. Development and application of metallo-phthalocyanines as potent G-quadruplex DNA binders and photosensitizers. J. Biol. Inorg. Chem. 2023, 28, 495–507. [Google Scholar] [CrossRef]
- Deiana, M.; Castán, J.M.A.; Josse, P.; Kahsay, A.; Sánchez, D.P.; Morice, K.; Gillet, N.; Ravindranath, R.; Patel, A.K.; Sengupta, P. A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression. Nucleic Acids Res. 2023, 51, 6264–6285. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Y.; Yi, H.-B.; Wang, F.; Chu, X.; Jiang, J.-H. Type I Photosensitizer Targeting G-Quadruplex RNA Elicits Augmented Immunity for Cancer Ablation. Angew. Chem. Int. Ed. 2023, 62, e202300162. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yu, Z.; Otani, Y. Dual-Color Fluorescence Switch-On Probe for Imaging G-Quadruplex and Double-Stranded DNA in Living Cells. Anal. Chem. 2022, 94, 4269–4276. [Google Scholar] [CrossRef]
- Muraoka, Y.; Muramoto, J.; Yasuhara, Y.; Kawatake, M.; Sakamoto, T. Near-Infrared Fluorescent Switch-On Probe for Guanine-Quadruplex Imaging with Extremely Large Stokes Shift. Anal. Chem. 2023, 95, 17162–17165. [Google Scholar] [CrossRef]
- Vorlícková, M.; Tomasko, M.; Sagi, A.J.; Bednarova, K.; Sagi, J. 8-oxoguanine in a quadruplex of the human telomere DNA sequence. FEBS J. 2012, 279, 29–39. [Google Scholar] [CrossRef]
- Xi, L.; Cech, T.R. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res. 2014, 42, 8565–8577. [Google Scholar] [CrossRef]
- McSharry, B.P.; Jones, C.J.; Skinner, J.W.; Kipling, D.; Wilkinson, G.W.G. Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J. Gen. Virol. 2001, 82, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, Y.; Guo, Y.; Yuan, H.; Cui, T.; Yao, S.; Jin, S.; Fan, H.; Wang, C.; Xie, R.; et al. Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nat. Commun. 2022, 21, 2179. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Whyatt, R.M.; Perera, F.P.; Randall, M.C.; Cooper, T.B.; Santella, R.M. Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic. Biol. Med. 1994, 18, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Etoh, K.; Nakao, M. A web-based integrative transcriptome analysis, RNAseqChef, uncovers cell/tissue type-dependent action of sulforaphane. J. Biol. Chem. 2023, 299, 104810. [Google Scholar] [CrossRef]
- Insińska-Rak, M.; Sikorski, M.; Wolnicka-Glubisz, A. Riboflavin and Its Derivates as Potential Photosensitizers in the Photodynamic Treatment of Skin Cancers. Cells 2023, 12, 2304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muramoto, J.; Sakamoto, T. Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death. Molecules 2024, 29, 5094. https://doi.org/10.3390/molecules29215094
Muramoto J, Sakamoto T. Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death. Molecules. 2024; 29(21):5094. https://doi.org/10.3390/molecules29215094
Chicago/Turabian StyleMuramoto, Junya, and Takashi Sakamoto. 2024. "Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death" Molecules 29, no. 21: 5094. https://doi.org/10.3390/molecules29215094
APA StyleMuramoto, J., & Sakamoto, T. (2024). Tripodal Quinone-Cyanine G-Quadruplex Ligands as Novel Photosensitizers on Photoinduced Cancer Cell Death. Molecules, 29(21), 5094. https://doi.org/10.3390/molecules29215094