Application of UHPLC-QqQ-MS/MS Method for Quantification of Beta-Adrenergic Blocking Agents (β-Blockers) in Human Postmortem Specimens
Abstract
:1. Introduction
2. Results
Toxicological Analysis of Authentic Biological Samples
3. Discussion
3.1. Overview of the Determination of β-Blockers in Biological Samples
3.2. Forensic Aspects
- In some laboratories, immunoenzymatic screening tests (ELISA) are performed for a few commonly abused drug groups (betablockers are not among them), followed by confirmatory analyses targeted at substances from groups that yielded positive results in the screening using LC-MS or GC-MS. The use of ELISA-based screening methods is associated with insufficient specificity and sensitivity, leading to fewer positive results than would be expected. Moreover, even the application of GC-MS may not result in the detection of all betablockers at ng/mL concentrations [50].
- The sensitivity of the analytical methods used is another important aspect regarding the frequency of betablocker detection in forensic toxicological studies. Betablockers with an average therapeutic concentration below 100 ng/mL were detected less frequently (33% positive results) than betablockers with an average therapeutic concentration above 500 ng/mL (70% positive results) [51]. The developed method demonstrates high sensitivity, with limits of quantification (LOQ) ranging from 0.1 to 0.5 ng/mL. This significantly enhances the likelihood of detecting betablockers, even in trace amounts, in blood samples.
- The selected pharmacokinetic parameters vary significantly: half-life (e.g., structurally similar ultra-fast-acting β1-adrenoreceptor antagonists landiolol and esmolol have a T1/2 of 2–8 min and 3–16 min, respectively [49]), lipophilicity, varying degrees of protein binding (e.g., acebutolol [10%]—propranolol [95%]), and different volumes of distribution (e.g., atenolol [0.7 L/kg]—nebivolol [10 L/kg]). These parameters affect the postmortem redistribution of betablockers and complicate the interpretation of forensic toxicological results [52]. For example, labetalol, propranolol, and carvedilol have a large volume of distribution, are largely protein-bound, undergo significant hepatic metabolism, have negligible renal clearance, and do not require dose adjustment in chronic kidney disease, while sotalol, nadolol, and atenolol have entirely opposite characteristics. Their different pharmacological properties influence their clinical effects, such as selectivity for β-1-adrenergic receptors (e.g., metoprolol > propranolol), α-adrenergic receptor antagonist activity (e.g., carvedilol, labetalol), intrinsic sympathomimetic activity (e.g., acebutolol, pindolol), membrane-stabilizing activity (MSA) due to sodium channel blockade (e.g., propranolol, acebutolol, and labetalol), central nervous system depression (e.g., propranolol), and Class III antiarrhythmic effect due to potassium channel antagonism (e.g., sotalol) [53]. Despite the different physicochemical properties, the developed method allows for the simultaneous determination of 18 betablockers in a single analytical run using a single preparation of biological material.
- Some betablockers are unstable. Few studies have been published on the stability of betablockers in postmortem material. One particularly interesting example in this context is landiolol, which has been found to be highly unstable in biological material. It is difficult to quantify, because it is rapidly hydrolysed by pseudocholinesterase during sample storage. Researchers have attempted to stabilise it by adding enzyme inhibitors, such as pyridostigmine or neostigmine bromide, to the biological material [54]. It is also worth noting that even the mere fact of drawing blood into different tubes containing commercial plasma separators can result in a decrease in the concentration of certain betablockers by several percent [55].
- The type of biological material tested: For the interpretation of results in a routine forensic toxicological analysis, at least two biological materials are typically used, most often blood and urine/vitreous humour. Blood is collected, because it is the international standard in the diagnosis of sudden death. The determination of xenobiotics in the blood serves, among other things, to interpret the impact of the detected substance on psychomotor functions and allows for the assessment of whether the concentration is therapeutic, toxic, etc. In contrast, the examination of the second biological material (e.g., urine, vitreous humour) provides additional data, such as information on the phase of metabolism and sometimes evidence of chronic use, among others. In forensic toxicology practice, situations arise where these materials are not available: the bladder may have been empty, blood may be unavailable due to complete exsanguination (e.g., in car accidents, plane crashes, deaths under train wheels, or in cases of advanced decomposition). In such cases, additional biological materials such as liver, kidney, or sometimes, only fragments of a muscle (e.g., death in a fire) are used. In a muscle sample from a deceased individual in a plane crash described by Johnson and Lewis 2006 [56], the concentration of propranolol in the muscle was more than ten times lower than in postmortem blood. The developed method can be effectively applied to analyse various types of biological materials, including foetal soft tissues, putrefaction fluid, kidney, liver, and gastric contents. Valuable data can be provided by studies examining the distribution of betablockers. Due to the diversity of this group of compounds, routes of administration should also be considered, for example, timolol administered conjunctivally for glaucoma treatment, as it reduces intraocular pressure. Its blood concentration may, therefore, be very low: 0.13–1.72 ng/mL (our method allows for determining such concentrations) in plasma [57] and undetectable by some methods. The method presented in this paper allows for the determination of timolol in the range of concentrations mentioned, in contrast to the methods presented in Table 2.
4. Materials and Methods
4.1. Biological Material and Chemicals
4.2. Instrumentation
4.3. Sample Preparation
4.4. Working Solutions, Calibration Curve, and Quality Control Samples
4.5. Validation Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliver, E.; Mayor, F., Jr.; D’Ocon, P. Beta-blockers: Historical perspective and mechanisms of action. Rev. Esp. Cardiol. (Engl. Ed.) 2019, 72, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Frishman, W.H.; Saunders, E. β-adrenergic blockers. J. Clin. Hypertens. 2011, 13, 649. [Google Scholar] [CrossRef] [PubMed]
- Gorre, F.; Vandekerckhove, H. Beta-blockers: Focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol. 2010, 65, 565–570. [Google Scholar] [CrossRef]
- Ziff, O.J.; Samra, M.; Howard, J.P.; Bromage, D.I.; Ruschitzka, F.; Francis, D.P.; Kotecha, D. Beta-blocker efficacy across different cardiovascular indications: An umbrella review and meta-analytic assessment. BMC Med. 2020, 18, 103. [Google Scholar] [CrossRef]
- Aronow, W.S. Current role of beta-blockers in the treatment of hypertension. Expert Opin. Pharmacother. 2010, 11, 2599–2607. [Google Scholar] [CrossRef]
- Lindholm, L.H.; Carlberg, B.; Samuelsson, O. Should β-blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 2005, 366, 1545–1553. [Google Scholar] [CrossRef]
- Vögele, A.; Johansson, T.; Renom-Guiteras, A.; Reeves, D.; Rieckert, A.; Schlender, L.; Martinez, Y.V. Effectiveness and safety of beta blockers in the management of hypertension in older adults: A systematic review to help reduce inappropriate prescribing. BMC Geriatr. 2017, 17, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Thomopoulos, C.; Bazoukis, G.; Tsioufis, C.; Mancia, G. Beta-blockers in hypertension: Overview and meta-analysis of randomized outcome trials. J. Hypertens. 2020, 38, 1669–1681. [Google Scholar] [CrossRef]
- Erdmann, E. Safety and tolerability of beta-blockers: Prejudices and reality. Eur. Heart J. Suppl. 2009, 11, A21–A25. [Google Scholar] [CrossRef]
- Katsi, V.; Papakonstantinou, I.P.; Papazachou, O.; Makris, T.; Tsioufis, K. Beta-blockers in pregnancy: Clinical update. Curr. Hypertens. Rep. 2023, 25, 13–24. [Google Scholar] [CrossRef]
- Bateman, B.T.; Patorno, E.; Desai, R.J.; Seely, E.W.; Mogun, H.; Maeda, A.; Fischer, M.A.; Hernandez-Diaz, S.; Huybrechts, K.F. Late pregnancy β blocker exposure and risks of neonatal hypoglycemia and bradycardia. Pediatrics 2016, 138, e20160731. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, H.; Özüçelik, D.; Doğan, H.; Erdoğan, M.; Yigit, Y. Suicidal cardiovascular drug intoxication in emergency department. Sağlık Bilim. Ve Meslekleri Derg. 2015, 2, 329–333. [Google Scholar] [CrossRef]
- Marzęda, P.; Kościuk, A.; Tchórz, M. Severe beta-blocker overdose in a 65-year-old female. J. Educ. Health Sport 2019, 9, 251–258. [Google Scholar]
- Love, J.N.; Handler, J.A. Toxic psychosis: An unusual presentation of propranolol intoxication. Am. J. Emerg. Med. 1995, 13, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Aouate, P.; Clerc, J.; Viard, P.; Seoud, J. Propranolol intoxication revealing a Brugada syndrome. J. Cardiovasc. Electrophysiol. 2005, 16, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Carfora, A.; Petrella, R.; Ambrosio, G.; Fracassi, I.; Festinese, S.; Liguori, B.; Campobasso, C.P. Acute intoxication by bisoprolol and drowning: Toxicological analysis in complex suicides. Separations 2023, 10, 68. [Google Scholar] [CrossRef]
- Love, J.N.; Elshami, J. Cardiovascular depression resulting from atenolol intoxication. Eur. J. Emerg. Med. 2002, 9, 111–114. [Google Scholar] [CrossRef]
- Ocak, M.; Çetinkaya, H.; Kesim, H. A case of high dose metoprolol poisoning; case report and literature review: Beta blocker poisoning treatment. Int. J. Curr. Med. Biol. Sci. 2021, 1, 12–15. [Google Scholar] [CrossRef]
- Delyle, S.G.; Duverneuil-Mayer, C.; Abe, E.; Mathieu, B.; De La Grandmaison, G.L.; Charlier, P.; Alvarez, J.C. Fatal intoxication with labetalol (Trandate®). Forensic Sci. Int. 2008, 178, e19–e21. [Google Scholar] [CrossRef]
- Love, J.N.; Love, J.; Howell, J.M.; Litovitz, T.L.; Klein-Schwartz, W. Acute beta blocker overdose: Factors associated with the development of cardiovascular morbidity. J. Toxicol. Clin. Toxicol. 2000, 38, 275–281. [Google Scholar] [CrossRef]
- Schulz, M.; Schmoldt, A.; Andresen-Streichert, H.; Iwersen-Bergmann, S. Revisited: Therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit. Care 2020, 24, 195. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, M.; Wachełko, O.; Tusiewicz, K.; Szpot, P. Severe poisoning after smoking a mixture of 4-fluoroisobutyryl fentanyl (4-FiBF) and alpha-pyrolidinoisohexaphenone (α-PiHP). J. Forensic Leg. Med. 2022, 85, 102287. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Shamsi, S.A. Simultaneous enantioseparation and sensitive detection of eight beta-blockers using capillary electrochromatography-electrospray ionization-mass spectrometry. Electrophoresis 2006, 27, 2139–2151. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, L.; Qiu, B.; Feng, Q.; Xia, S.; Chen, G. Rapid separation and sensitive detection method for β-blockers by pressure-assisted capillary electrochromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 2008, 1193, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Patel, D.K. Matrix-assisted laser desorption/ionization mass spectrometry for quantitative determination of β-blocker drugs in one-drop of human serum sample. J. Chromatogr. B 2011, 879, 35–40. [Google Scholar] [CrossRef]
- Silva Gracia, M.; Köppl, A.; Unholzer, S.; Haen, E. Development and validation of an HPLC-UV method for the simultaneous determination of the antipsychotics clozapine, olanzapine and quetiapine, several beta-blockers and their metabolites. Biomed. Chromatogr. 2017, 31, e3968. [Google Scholar] [CrossRef]
- Musch, G.; Buelens, Y.; Massart, D.L. A strategy for the determination of beta blockers in plasma using solid-phase extraction in combination with high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1989, 7, 483–497. [Google Scholar] [CrossRef]
- Katayama, M.; Matsuda, Y.; Shimokawa, K.; Tanabe, S.; Hara, I.; Sato, T.; Daimon, H. Determination of β-blockers by high performance liquid chromatography coupled with solid phase microextraction from urine and plasma samples. Anal. Lett. 2001, 34, 91–101. [Google Scholar] [CrossRef]
- Paik, M.J.; Lee, J.; Kim, K.R. Simultaneous screening analysis of multiple beta-blockers in urine by gas chromatography-mass spectrometry in selected ion monitoring mode. Anal. Chim. Acta 2007, 601, 230–233. [Google Scholar] [CrossRef]
- Leloux, M.S.; Maes, R.A. The use of electron impact and positive chemical ionization mass spectrometry in the screening of beta blockers and their metabolites in human urine. Biomed. Environ. Mass Spectrom. 1990, 19, 137–142. [Google Scholar] [CrossRef]
- Gonçalves, R.; Ribeiro, C.; Cravo, S.; Cunha, S.C.; Pereira, J.A.; Fernandes, J.O.; Afonso, C.; Tiritan, M.E. Multi-residue method for enantioseparation of psychoactive substances and beta blockers by gas chromatography-mass spectrometry. J. Chromatogr. B 2019, 1125, 121731. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wanwimolruk, S.; Hung, C.T.; Zoest, A.R. Quantitative analysis of β-blockers in human plasma by reversed-phase ion-pair high-performance liquid chromatography using a microbore column. J. Liq. Chromatogr. 1991, 14, 777–793. [Google Scholar] [CrossRef]
- Hemmati, M.; Asghari, A.; Bazregar, M.; Rajabi, M. Rapid determination of some beta-blockers in complicated matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography. Anal. Bioanal. Chem. 2016, 408, 8163–8176. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Narimatsu, S.; Lord, H.L.; Pawliszyn, J. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of beta-blockers and metabolites in urine and serum samples. Anal. Chem. 1999, 71, 4237–4244. [Google Scholar] [CrossRef]
- Alpertunga, B.; Sungur, S.; Ersoy, L.; Manav, S.Y. Determination of some β-blockers as dabsyl derivatives by HPLC. Arch. Pharm. 1990, 323, 587–589. [Google Scholar] [CrossRef]
- Yıldırım, S.; Erkmen, C.; Uslu, B. Novel trends in analytical methods for β-blockers: An overview of applications in the last decade. Crit. Rev. Anal. Chem. 2020, 52, 131–169. [Google Scholar] [CrossRef]
- Shrivastav, P.S.; Buha, S.M.; Sanyal, M. Detection and quantitation of β-blockers in plasma and urine. Bioanalysis 2010, 2, 263–276. [Google Scholar] [CrossRef]
- Tusiewicz, K.; Chłopaś-Konowałek, A.; Wachełko, O.; Zawadzki, M.; Szpot, P. A fatal case involving the highest ever reported 4-CMC concentration. J. Forensic Sci. 2023, 68, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Tomková, J.; Ondra, P.; Kocianová, E.; Václavík, J. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. Biomed. Chromatogr. 2017, 31, e3911. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Opfermann, G.; Schänzer, W. High speed determination of beta-receptor blocking agents in human urine by liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2001, 15, 393–402. [Google Scholar] [CrossRef]
- Umezawa, H.; Lee, X.P.; Arima, Y.; Hasegawa, C.; Izawa, H.; Kumazawa, T.; Sato, K. Simultaneous determination of beta-blockers in human plasma using liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2008, 22, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Khedr, A.; Khayyat, A.N.; El-Shorbagi, A.A.; Kammoun, A.K. A sensitive liquid chromatography-tandem mass spectrometric method for determination of five β-blockers after labeling with either hydrazonoyl chloride or dansyl chloride reagent. J. Chromatogr. B 2020, 1160, 122383. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H.; Tenberken, O.; Kratzsch, C.; Weber, A.A.; Peters, F.T. Screening for library-assisted identification and fully validated quantification of 22 beta-blockers in blood plasma by liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization. J. Chromatogr. A 2004, 1058, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.J.; Danaceau, J.P. Simultaneous extraction and screening of diuretics, beta-blockers, selected stimulants and steroids in human urine by HPLC-MS/MS and UPLC-MS/MS. J. Chromatogr. B 2009, 877, 3857–3864. [Google Scholar] [CrossRef]
- Mazaraki, K.; Kabir, A.; Furton, K.G.; Fytianos, K.; Samanidou, V.F.; Zacharis, C.K. Fast fabric phase sorptive extraction of selected β-blockers from human serum and urine followed by UHPLC-ESI-MS/MS analysis. J. Pharm. Biomed. Anal. 2021, 199, 114053. [Google Scholar] [CrossRef]
- Szpot, P.; Nowak, K.; Wachełko, O.; Tusiewicz, K.; Chłopaś-Konowałek, A.; Zawadzki, M. Methyl (S)-2-(1–7 (5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate (5F-MDMB-PICA) intoxication in a child with identification of two new metabolites (ultra-high-performance liquid chromatography–tandem mass spectrometry). Forensic Toxicol. 2023, 41, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Szpot, P.; Wachełko, O.; Zawadzki, M. Diclofenac concentrations in post-mortem specimens—Distribution, case reports, and validated method (UHPLC-QqQ-MS/MS) for its determination. Toxics. 2022, 10, 421. [Google Scholar] [CrossRef]
- Dupuis, C.; Gaulier, J.M.; Pélissier-Alicot, A.L.; Marquet, P.; Lachâtre, G. Determination of three beta-blockers in biofluids and solid tissues by liquid chromatography-electrospray-mass spectrometry. J. Anal. Toxicol. 2004, 28, 674–679. [Google Scholar] [CrossRef]
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 12th ed.; Biomedical Publications: Seal Beach, CA, USA, 2017. [Google Scholar]
- Pujos, E.; Cren-Olivé, C.; Paisse, O.; Flament-Waton, M.M.; Grenier-Loustalot, M.F. Comparison of the analysis of beta-blockers by different techniques. J. Chromatogr. B 2009, 877, 4007–4014. [Google Scholar] [CrossRef]
- Canfield, D.V.; Dubowski, K.M.; Whinnery, J.M.; Forster, E.M. Pilot-reported beta-blockers identified by forensic toxicology analysis of postmortem specimens. J. Anal. Toxicol. 2018, 42, 1–5. [Google Scholar] [CrossRef]
- Pélissier-Alicot, A.L.; Gaulier, J.M.; Dupuis, C.; Feuerstein, M.; Léonetti, G.; Lachâtre, G.; Marquet, P. Post-mortem redistribution of three beta-blockers in the rabbit. Int. J. Legal Med. 2006, 120, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, J.; Shepherd, G.; Hoffman, R.S.; Gosselin, S.; Roberts, D.M.; Li, Y.; Nolin, T.D.; Lavergne, V.; Ghannoum, M. Extracorporeal treatment for poisoning to beta-adrenergic antagonists: Systematic review and recommendations from the EXTRIP workgroup. Crit. Care 2021, 25, 201. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Shi, M.; Liu, X.; Sun, Y.; Hu, L.; Yang, Y.; Fawcett, J.P.; Gu, J.; Zhao, L. Determination of landiolol, an ultra-short-acting β1-receptor antagonist, in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2012, 891–892, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Schrapp, A.; Mory, C.; Duflot, T.; Pereira, T.; Imbert, L.; Lamoureux, F. The right blood collection tube for therapeutic drug monitoring and toxicology screening procedures: Standard tubes, gel or mechanical separator? Clin. Chim. Acta 2019, 488, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.D.; Lewis, R.J. Quantitation of atenolol, metoprolol, and propranolol in postmortem human fluid and tissue specimens via LC/APCI-MS. Forensic Sci. Int. 2006, 156, 106–117. [Google Scholar] [CrossRef]
- Nieminen, T.; Lehtimäki, T.; Mäenpää, J.; Ropo, A.; Uusitalo, H.; Kähönen, M. Ophthalmic timolol: Plasma concentration and systemic cardiopulmonary effects. Scand. J. Clin. Lab. Investig. 2007, 67, 237–245. [Google Scholar] [CrossRef]
- Brodde, O.E.; Kroemer, H.K. Drug-drug interactions of beta-adrenoceptor blockers. Arzneimittelforschung 2003, 53, 814–822. [Google Scholar]
- Maharaj, S.; Seegobin, K.; Perez-Downes, J.; Bajric, B.; Chang, S.; Reddy, P. Severe carvedilol toxicity without overdose—Caution in cirrhosis. Clin. Hypertens. 2017, 23, 25. [Google Scholar] [CrossRef]
- Zawadzki, M.; Wachełko, O.; Chłopaś-Konowałek, A.; Szpot, P. Quantification and distribution of 4-fluoroisobutyryl fentanyl (4-FiBF) in postmortem biological samples using UHPLC–QqQ-MS/MS. Forensic Toxicol. 2021, 39, 451–463. [Google Scholar] [CrossRef]
- Wachełko, O.; Szpot, P.; Tusiewicz, K.; Nowak, K.; Chłopaś-Konowałek, A.; Zawadzki, M. An ultra-sensitive UHPLC-QqQ-MS/MS method for determination of 54 benzodiazepines (pharmaceutical drugs, NPS and metabolites) and z-drugs in biological samples. Talanta 2023, 251, 123816. [Google Scholar] [CrossRef]
- Wachełko, O.; Tusiewicz, K.; Zawadzki, M.; Szpot, P. New approach for barbiturates, phenytoin, methyprylon and glutethimide determination and fragmentation (UHPLC-MS/MS). J. Pharm. Biomed. Anal. 2023, 228, 115318. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology. Standard Practices for Method Validation in Forensic Toxicology. ASB Stand. 2013, 37, 452–474. [Google Scholar]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef] [PubMed]
No. | Substance | Precursor Ion (m/z) | Product Ion (m/z) | Dwell Time (ms) | Q1 Pre-Bias (V) | Collision Energy (V) | Q3 Pre-Bias (V) | Retention Time (min) |
---|---|---|---|---|---|---|---|---|
1 | Sotalol | 273.2 | 255.2 * | 15 | −10 | −13 | −17 | 2.42 |
213.15 | 15 | −14 | −19 | −22 | ||||
133.25 | 15 | −15 | −26 | −24 | ||||
2 | Atenolol | 267.0 | 145.2 * | 13 | −16 | −24 | −15 | 2.45 |
190.15 | 13 | −14 | −21 | −21 | ||||
225.2 | 13 | −14 | −18 | −23 | ||||
3 | Carteolol | 293.0 | 237.15 * | 8 | −15 | −17 | −26 | 3.22 |
202.1 | 8 | −15 | −21 | −21 | ||||
164.1 | 8 | −15 | −23 | −29 | ||||
4 | Pindolol | 249.0 | 116.2 * | 15 | −14 | −17 | −18 | 3.39 |
172.2 | 15 | −27 | −19 | −16 | ||||
74.25 | 15 | −26 | −26 | −11 | ||||
5 | Timolol | 317.0 | 261.05 * | 8 | −16 | −20 | −23 | 3.98 |
74.15 | 8 | −15 | −25 | −24 | ||||
244.2 | 8 | −15 | −23 | −25 | ||||
6 | Acebutolol | 337.2 | 116.2 * | 6 | −10 | −22 | −21 | 4.02 |
319.3 | 6 | −18 | −17 | −20 | ||||
260.1 | 6 | −19 | −19 | −29 | ||||
7 | Metoprolol | 268.0 | 116.2 * | 8 | −13 | −20 | −11 | 4.14 |
98.05 | 8 | −13 | −21 | −15 | ||||
74.15 | 8 | −13 | −22 | −30 | ||||
8 | Esmolol | 296.0 | 145.2 * | 4 | −16 | −26 | −14 | 4.45 |
219.2 | 4 | −12 | −21 | −24 | ||||
254.15 | 4 | −22 | −19 | −17 | ||||
9 | Celiprolol | 380.4 | 251.2 * | 4 | −21 | −23 | −15 | 4.55 |
307.2 | 4 | −26 | −18 | −14 | ||||
324.3 | 4 | −20 | −19 | −21 | ||||
10 | Oxprenolol | 266.0 | 72.3 * | 4 | −14 | −22 | −13 | 4.70 |
225.2 | 4 | −15 | −14 | −27 | ||||
116.2 | 4 | −14 | −17 | −20 | ||||
11 | Bisoprolol | 326.0 | 116 * | 6 | −20 | −20 | −20 | 4.95 |
74.15 | 6 | −15 | −25 | −26 | ||||
56.1 | 6 | −15 | −35 | −21 | ||||
12 | Landiolol | 510.0 | 157.25 * | 4 | −26 | −38 | −29 | 5.04 |
423.25 | 4 | −26 | −21 | −20 | ||||
365.15 | 4 | −26 | −24 | −25 | ||||
13 | Metipranolol | 310.0 | 191.1 * | 4 | −12 | −25 | −30 | 5.19 |
233.2 | 4 | −12 | −19 | −26 | ||||
165.2 | 4 | −17 | −30 | −28 | ||||
14 | Propranolol | 260.0 | 116.1 * | 6 | −11 | −20 | −17 | 5.25 |
183.15 | 6 | −11 | −18 | −18 | ||||
56.1 | 6 | −11 | −29 | −23 | ||||
15 | Alprenolol | 250.3 | 116.25 * | 4 | −13 | −17 | −11 | 5.33 |
91.05 | 4 | −13 | −42 | −16 | ||||
173.25 | 4 | −13 | −16 | −20 | ||||
16 | Betaxolol | 308.1 | 116.15 * | 6 | −15 | −21 | −11 | 5.46 |
72.05 | 6 | −14 | −24 | −27 | ||||
98.15 | 6 | −15 | −23 | −14 | ||||
17 | Carverdilol | 407.0 | 100.2 * | 8 | −10 | −30 | −10 | 6.07 |
194.2 | 8 | −23 | −37 | −20 | ||||
283.2 | 8 | −21 | −22 | −30 | ||||
18 | Nebivolol | 406.2 | 151.25 * | 21 | −12 | −31 | −15 | 6.42 |
103.2 | 21 | −12 | −54 | −18 | ||||
123.25 | 21 | −21 | −41 | −12 | ||||
IS1 | Atenolol-d7 | 274.1 | 145.15 * | 13 | −14 | −28 | −24 | 2.44 |
190.25 | 13 | −15 | −21 | −19 | ||||
226.1 | 13 | −14 | −18 | −25 | ||||
IS2 | Metoprolol-d7 | 275.1 | 123.35 * | 6 | −14 | −21 | −24 | 4.13 |
191.2 | 6 | −19 | −20 | −19 | ||||
159.15 | 6 | −10 | −23 | −17 | ||||
IS3 | Propranolol-d7 | 267.0 | 189.3 | 4 | −14 | −19 | −12 | 5.22 |
116.25 * | 4 | −17 | −21 | −20 | ||||
98.15 | 4 | −10 | −21 | −15 |
Biological Sample (Volume) | Number of Determined β-Blockers | Internal Standard | Sample Preparation Technique | Method | The Lowest LOQ of Method [ng/mL] | Year | Reference |
---|---|---|---|---|---|---|---|
Serum (1 mL) | 6 | Metoprolol-d7 | LLE (pH9, butyl acetate) | UHPLC-TOF (ESI, Scan) | 0.3 | 2017 | [39] |
Biological fluids (2 mL) Solid tissues (200 mg) a | 3 | Clenbuterol | LLE supported by Extrelut® columns | HPLC-MS (APCI, SIM) | 10 | 2004 | [48] |
Urine (5 mL) | 32 | Bupranolol | Enzymatic hydrolysis with β-glucuronidase followed by LLE | HPLC-MS/MS (APCI, MRM) | – | 2001 | [40] |
Plasma (1 mL) | 4 | Pindolol | Dilution and filtration | LC-MS/MS (ESI, SRM) | 10 | 2008 | [41] |
Plasma (1 mL) | 5 | – | SPE with derivatization b | LC-MS/MS (ESI, MRM) | 0.1 | 2020 | [42] |
Plasma (500 µL) | 22 | Trimipramine-d3 | SPE | LC-MS (APCI, SIM) | 2.5 | 2004 | [43] |
Urine (2 mL) | 19 | Furosemide-d5 Benzoylecgonine-d3 | SPE | UPLC-MS/MS (ESI, MRM) | – | 2009 | [44] |
Serum or urine (200 µL) | 6 | Sulfapyridine | Fast fabric phase sorptive extraction | UHPLC-MS/MS (ESI, MRM) | 2 | 2021 | [45] |
Biological fluids (100 µL) Solid tissues (100 mg) | 18 | Atenolol-d7 Metorpolol-d7 Propranolol-d7 | LLE (pH9, ethyl acetate) | UHPLC-MS/Ms (ESI, MRM) | 0.1 | 2024 | Presented method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpot, P.; Tusiewicz, K.; Wachełko, O.; Zawadzki, M. Application of UHPLC-QqQ-MS/MS Method for Quantification of Beta-Adrenergic Blocking Agents (β-Blockers) in Human Postmortem Specimens. Molecules 2024, 29, 4585. https://doi.org/10.3390/molecules29194585
Szpot P, Tusiewicz K, Wachełko O, Zawadzki M. Application of UHPLC-QqQ-MS/MS Method for Quantification of Beta-Adrenergic Blocking Agents (β-Blockers) in Human Postmortem Specimens. Molecules. 2024; 29(19):4585. https://doi.org/10.3390/molecules29194585
Chicago/Turabian StyleSzpot, Paweł, Kaja Tusiewicz, Olga Wachełko, and Marcin Zawadzki. 2024. "Application of UHPLC-QqQ-MS/MS Method for Quantification of Beta-Adrenergic Blocking Agents (β-Blockers) in Human Postmortem Specimens" Molecules 29, no. 19: 4585. https://doi.org/10.3390/molecules29194585
APA StyleSzpot, P., Tusiewicz, K., Wachełko, O., & Zawadzki, M. (2024). Application of UHPLC-QqQ-MS/MS Method for Quantification of Beta-Adrenergic Blocking Agents (β-Blockers) in Human Postmortem Specimens. Molecules, 29(19), 4585. https://doi.org/10.3390/molecules29194585